I n(@)D E First Component Release

Document Due Date: 31/08/2020
Document Submission Date: 31/08/2020

Work Packages 3,4,5,6, 7,8

Type: Other (Software)
Document Dissemination Level: Public

INODE
Intelligent Open Data Exploration
is funded by the Horizon 2020 Framework Programme of the EU for Research and Innovation.
Grant Agreement number: 863410— INODE — H2020-EU.1.4.1.3.

I nc@)D E D3.1 — D8.1 First Component Release

(This page has been intentionally left blank)

Page 1 of 65

I n@D E D3.1 — D8.1 First Component Release

Executive Summary

This deliverable provides the first software component release of the INODE project. The
deliverable contains the following 6 sub-deliverables:

D3.1 Integrated Query Processing Services
D4.1 Data Linking and Modeling Services
D5.1 Data Access & Exploration Services
D6.1 User Assistance Services

D7.1 Multi-Modal Discovery Services

D8.1 Evaluation Service

In Section 1 we give a brief overview of the INODE system architecture. In Section 2 we
provide screenshots of a working prototype of INODE 1.0. In Section 3 we list the API
specification of the currently implemented services. In Section 4, we give a snapshot of the
current data models of the three use cases. Note that a detailed description of these
components is part of the next deliverables D3.2 to D8.2.

Page 2 of 65

I n@D E D3.1 — D8.1 First Component Release

Project Information

Intelligent Open Data Exploration
Zurich University of Applied Sciences (ZHAW), CH
European Commission

H2020-EU.1.4.1.3. - Development, deployment and
operation of ICT-based e-infrastructures

INFRAEOSC-02-2019 - Prototyping new innovative services
Funding Instrument Research and Innovation action

Grant Agreement No. 863410

Document Information

D3.1, D4.1, D5.1, D6.1, D7.1, D8.1
First Component Release
WP3, WP4, WP5, WP6, WP7, WP8

Under the Programme

Belmpas Theofilos, Orest Gkini, Koutrika Georgia, Skoutas
Dimitris, Stavroula Eleftheraki (ATHENA)

Amer-Yahia Sihem, Boumaout Mourad, Personnaz Aurélien
(CNRS)

Licke-Tieke Hendrik, May Thorsten (Fraunhofer)

Litke Antonis, Papadakis Nikolaos, Papadopoulos Dimitris (Infili)
Fabricius Maximilian, Subramanian Srividya (MPE)

Bastian Frederic, Mendes de Farias Tarcisio (SIB)

Massucci Francesco, Multari Francesco, Rull Guillem (SIRIS)
Calvanese Diego, Lanti Davide, Mosca Alesandro, Guohui Xiao
(UNIBZ)

Braschler Martin, Kosten Catherine, Sima Ana, Smith Ellery,
Stockinger Kurt (ZHAW)

Page 3 of 65

I n@D E D3.1 — D8.1 First Component Release

Table of Contents

1 INODE System Architecture 5
1.1. OpenDataDialog 6

1.2 OpenDatalinking 6

1.3 BackendServices 7

2 INODE in Action 8
2.1 OpenDataDialog 9
Scenario 1: NL-to-SQL, SQL-to-NL and Simple Data Model Visualization 9
Scenario 2: Adding More Advanced Results Visualization 15
Scenario 3: Adding Pipeline Operators 18

2.2 OpenDatalinking 27
2.2.1 Information Extraction from PubMed abstracts and Linking with Uberon and
OncoMX concepts 27

The ZHAW Information Extraction Engine 27

The INF Information Extraction Engine 32

2.2.2 Enriching the SIRIS database by linking CORDIS projects based on their

natural-language Objectives 34

2.2.3 Mapping-Patterns Bootstrapper (MPBoot) 37

3 API Specification 40
3.1 OpenDataDialog 40
3.1.1 NL-to-SQL and SQL-to-NL 40

3.1.2 MultiTable Visualization 44

3.1.3 Pipeline Operators 44

3.2 OpenDatalinking 49

4 Data Models 53
4.1 Research & Innovation Policy Making 53

4.2 Astrophysics 57

4.3 Cancer Research 60

Page 4 of 65

I n'@)D E D3.1 — D8.1 First Component Release

1 INODE SysTEM ARCHITECTURE

In this section we give a brief overview of the INODE’s system architecture. The high-level
architecture is illustrated in Figure 1. In a nutshell, INODE brings together the following main
services that we discuss in detail in Sections 1.1, 1.2 and 1.3.

Data Access & Exploration services enable the user to communicate with the system.
User Assistance services allow the system to be reactive as well as anticipative of the
user needs.

Multi-Modal Discovery services enable visual interaction and exploration.

Data Linking & Modeling services enable working with diverse datasets.

Integrated Query Processing services are responsible for the execution of the
requests coming from the user-facing services.

We refer to all the services shown in green as OpenDataDialog and to the services shown in
orange as OpenDatalinking. The services shown in blue are BackendServices.

|rData Access & Expli:rratit:un1 (User Assistance Rt Multi-Modal Discovery i 6ata Linking and Modelin?
By Natural . Visual Result Data-driven
Recommendations : 5
Language Exploration Mapping
By Examnple . Visu_al Quu_erv Task-dr_iven
Explanations Manipulation Mapping
I AL) Knowledge
By Analytics Graph
Generation
. v,

Integrated Query Processing

s Query Execution Data Analytics L L T
Federation rY vt Justification

|

@

Figure 1: Major components of the INODE architecture.

Page 5 of 65

I n@D E D3.1 — D8.1 First Component Release

1.1. OpenDataDialog

OpenDataDialog is the synergy of Data Access & Exploration, User Assistance, and
Multi-Modal Discovery Services. We will now describe these services in more detail.

Data Access & Exploration. INODE introduces operators for the user to access and explore
the data. For instance, in by example, the user inputs examples of data and expects the
system to return similar ones in the underlying dataset. For by analytics, the user inputs
analytics in the form of histograms, data distributions, aggregates (such as variance and
counts), etc., and expects to receive data results that exhibit those analytics. For by natural
language, the user provides a query in natural language and INODE translates the query into
SQL or SPARQL. INODE instantiates sets of items to allow operator composition.

User Assistance. INODE guides the user in data exploration by offering recommendations
(i.e., queries that could be asked) and explanations, i.e., natural language descriptions of
queries to further help the user understand system responses and the underlying data.

Multi-Modal Discovery. This layer implements means to explore the results of each
exploration step and to manipulate operators. In doing so, it helps users understand the
options they have for finding the data they need through visual exploration of results at each
exploration step and interactive manipulation and optimization of exploration operators.

Visual exploration of intermediate results aims at enabling users to visually manage the
actual content. When necessary, users can revise their exploration steps through interactive
manipulation and optimization of exploration operators.

1.2 OpenDatalinking

OpenDatalinking is the synergy of Data Linking and Modeling Services that we will now
describe in more detail.

Data Linking and Modeling. This layer enables linking of loosely coupled collections of
datasets to support queries across them. INODE supports two different forms of mapping
construction, namely data-driven mapping, which is triggered when new data sources are
added to the system, and task-driven mapping, which is triggered when the execution of
new analytic tasks is requested. In data-driven mapping, the structure and content of new
data sources are analyzed and correlated to the ontology, so as to generate new mappings
and propose them to the system designer for validation. In task-driven mapping, requested
tasks are matched against available but not yet integrated data sources, and candidate
sources with generated mappings are proposed, again for validation.

Moreover, when integrating text data, INODE enables automatic knowledge graph
generation, by identifying entities and relationships in unstructured documents and
integrating them into a queryable ontology. As a consequence, both structured and
unstructured data can be linked and queried in a uniform way.

Page 6 of 65

I n@D E D3.1 - D8.1 First Component Release

1.3 BackendServices

Integrated Query Processing. This service is responsible for the execution of queries and can
be considered as the back-end service for OpenDataDialog and OpenDatalinking. Source
federation provides an integrated coherent view of the heterogeneous data sources (e.g.
SQL, SPARQL, text) accessible in INODE to enable ontology-based data access. Query
execution provides on-the-fly query rewriting by exploiting different forms of reasoning
taking into account various data dimensions (such as temporal, spatial, etc). Data analytics
focuses on efficient query transformation and execution to compute complex analytical
functions. Answer justification generates compact and easy to understand explanations for

query results.

Page 7 of 65

I n@D E D3.1 - D8.1 First Component Release

2 INODE N AcTiON

We have implemented a preliminary version of INODE 1.0. The following section describes
how the OpenDataDialog and the OpenDatalinking services can be used.

Referring to our system architecture shown in Figure 1, we use the following systems:
OpenDataDialog:

e Data Access and Exploration:
o By Natural Language:
m SODA+!
m NALIR+
o By Example:
m CNRS-Pipelines®
e User Guidance:
o Explanations:
m Llogos’
e Multi-Modal Discovery:
o Visual Result Exploration:
m FHG MultiTableExplorer
m FHG executor-processor library integration

OpenDatalinking:

e Data Linking and Modeling:
o Ontop-Bootstrapper (MPBoot)
o Noima®: Infili-Extraction Engine
o ZHAW-Extraction Engine

! We added NLP extensions to the original SODA source code. Blunschi, L., Jossen, C., Kossmann, D.,
Mori, M., & Stockinger, K. (2012). SODA: Generating SQL for business users. Proceedings of the VLDB
Endowment, 5(10), 932-943.

2 A modified version of the NaLIR system: Li, F., & Jagadish, H. V. (2014). Constructing an interactive
natural language interface for relational databases. Proceedings of the VLDB Endowment, 8(1), 73-84.
3 Data Exploration Pipelines: http://www.inode-project.eu/blog/data-exploration-pipelines/

4 Kokkalis, A., Vagenas, P., Zervakis, A., Simitsis, A., Koutrika, G., & loannidis, Y. (2012, May). Logos: a
system for translating queries into narratives. In Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data (pp. 673-676).

> Noima: http://www.inode-project.eu/blog/noima/

Page 8 of 65

I nc@)D E D3.1 — D8.1 First Component Release

2.1 OpenDataDialog

We will now explain the functionality of OpenDataDialog by walking through the following
three different usage scenarios of increasing complexity. These scenarios demonstrate the
operability and successful integration of various INODE-services.

e Scenario 1: NL-to-SQL, SQL-to-NL and simple data model visualization
e Scenario 2: Adding more advanced result visualization to Scenario 1

e Scenario 3: Adding pipeline operators to Scenario 2

Scenario 1: NL-to-SQL, SQL-to-NL and Simple Data Model Visualization

Figure 2 shows the INODE pilot landing page where users will begin their data
exploration/query journey.

PILOT alpha

L2 [=]

@ MultTable view

Figure 2: Landing page of INODE pilot.

1. Translating natural language to SQL: Assume that a user wants to issue the query
“Find the topics of projects that ended in 2014“ (see Figure 3) against the CORDIS
database. Clicking the gear button opens a menu for the user to select which
systems to use, in this case Nalir+ or SODA and which database to search, in this case
CORDIS. The users need to choose how many interpretations (i.e. different resulting
SQL statements) they would like to have from each search system as well as how
many results (rows of data from the database) from each interpretation they would
like to see.

Page 9 of 65

I n@D E D3.1 — D8.1 First Component Release

Enter your query | ? ‘ :

Choose one of more systems o execute
B WNalir+ [NaturalLanguage]
B Soda [Keyword]

Maximum interpretations per system
3

Maximum number of results per interpretation
Choose a database

0O cordis

@ MultiTable view

Figure 3: Choosing the NL-to-SQL systems and the database.

2. Clicking the question mark button opens a menu (Figure 4) with example queries
intended to guide the users in their data exploration/query journey. These example
gueries show both the natural language question that a user would ask, as well as,
how to formulate this query in a way that both query engines can understand and
return the expected results from the database. Clicking the play button executes the
qguery. These query examples are intended to help guide the user in their own query
formulations.

Page 10 of 65

I nC@)D E D3.1 — D8.1 First Component Release

w
.

Enter your query

Natural Language Query Keyword Query Database

Find all projects Find all projects cordis 3
Find projects that started before 2018 project start_year >2018 cordis »
Find institutions located in Italy Find institutions Italy cordis >
Find projects where Alberte Broggi was involved Find projects with Alberto BROGGI cordis >
How many projects started in 20167 count{project) start_year = 2016 cordis >
What's the total cost of all projects? projects sum(total_cost) cordis 3
Find projects whose coordinator is from Greece project member_role=coordinator couniry_id=89 cordis >
Find the topics of projects that ended in 2014 project_topics end_year = 2014 cordis >
Find institutions that have acted as a coordinator institutions member_role=coordinator cordis >
Find projects with a member from Greece projects name=Greece cordis »
List all the members of project ALFRED members project ALFRED cordis >
List all projects under the FP7-ICT programme projects programme FP7-ICT cordis »
Find the role of ATHENA in project ARGOS member role ATHENA project ARGOS cordis >
Return all research organisations located in Greece institutions activity_types research organisations country Greece cordis >
Find all projects connected with institutes located in Schaffhausen projects institutes eu_territorial_units Schaffhausen cordis >
area

Figure 4: Example queries help the users to get a sense for what kind of queries are
supported.

After executing the query “Find the topics of projects that ended in 2014”, the user is shown
the following results from the query. As shown in Figure 5, the user sees several different
interpretations of their query from the query engine they selected (seen in Figure 3). Each
interpretation shows 5 results, or rows from the database.

Page 11 of 65

I ngD E D3.1 - D8.1 First Component Release

Find the topics of projects that ended in 2014 ? I ﬁ m

B MultiTable view

Interpretation #1 - bysoda + Sresulis - Explain - Visualize

Results W

project_topics.project project_topics.topic projects.unics_id projects.acronym projeets title projects.ec_call projects.ec_fund_sche

146191 SME-2012-1 146191 GAPAID Genes And FP7-SME-2012 BSG-SME
Proteins for
Autolmmunity
Diagnostics

Interpretation #2 - bynalr+ - Tresuis + Explain - Visualize

Results v
topics.code project_members.ec_contribution

FP7-PEOPLE-2009-NIGHT 2014

Figure 5: Two different interpretations of the query “Find the topics of projects that ended in
2014",

The following features help the user better understand the data which has been returned by
their query.

1. Clicking on “Explain” for each interpretation gives the user a natural
language explanation of what data was returned in their query as seen in
Figure 6.

Page 12 of 65

I ngD E D3.1 - D8.1 First Component Release

Find the topics of projects that ended in 2014 ? ‘ ¢ ‘

B MultiTable view
Interpretation #1 - oy

2 + Sresults + Explain - Visualize

NL Explanation

Find everything about project topics and everything about projects whose end year is 2014 for projects associated with these project topics.

Results v
project_topics.project project_topics.topic projects.unics_id projects.acronym projects.title projects.ec_call projects.ec_fund_sche

146191 SME-2012-1 146191 GAPAID Genes And FP7-SME-2012 BSG-SME

Proteins for
Autolmmunity
Diagnostics

Figure 6: NL explain shows the natural language interpretation of the resulting SQL query.

2. Clicking on “Visualize” for each interpretation gives the user a visualization
of the database model as seen in Figure 7. The tables queried by the user are
highlighted in pink, and the executed SQL statement is also shown in order

to provide the user with additional context for understanding their data and
determining how to proceed in their exploration.

Page 13 of 65

I n@D E D3.1 - D8.1 First Component Release

Interpretation #1

SQL query

SELECT # FROM project_topics, projects WHERE ((projects.end_year=2014)) AND (project_to

Equivalent NL query

Find everything about project topics and everything about projects whose end year is 20

Network visualization

programmes

erc_panels
subject_areas

project_erc_panels

erc_research_domains funding_schemes

project_programmes

project_subject_areas

activity _types projects

countries people

project_members

institutions project_topics ec_framework_programs

project_member_roles

eu_territorial_units
topics

Figure 7: For a given natural language query, the resulting SQL statements, the
NL-explanation and the respective tables of the data model are shown that are used for
answering the NL query.

Page 14 of 65

I n@D E D3.1 - D8.1 First Component Release

Scenario 2: Adding More Advanced Results Visualization

Turning on the MultiTable view adds additional ways for the user to explore the data such as
charts (tailored to the data type of the column) and data aggregations for each
interpretation of the given Natural Language query. Initially all of the columns from the
resulting interpretations are visualized in the MultiTable view (as seen in Figure 8). The
query shown in Figure 8 requires a join of two tables, which means that a significant number
of columns are visualized with the MultiTable view. All of the different tables can be viewed
by scrolling to the right. The user has the option to hand select which columns are the most
interesting for their data exploration. Users can choose which columns and tables they want
to visualize by clicking on the plus sign in the first row as seen in Figure 9. Figure 10 shows a
pared down version of the tables and columns a viewer might wish to see.

Find the topics of projects that ended in 2014 ? ﬁ m

MultiTable view
@

+ project_topics.project project_topics.tepic projects.unics_id projects.acronym projects.title projects.ec_call projects.ec_{
FP7-PEOPLE-201 442 : REFRESH

FP7-PEOPLE-200.. 337 ICARUS
W FP7-PEOPLE-201.. 130 IMAGINE
FP?-PEOPLE-201.. 110 Focus

Others 2652 Others

FP7-PEOPLE 442 ° MC-EF
FPT-PEOPLE.. 176 cP

CRFP
MC-RG
Cthers

owww

&
2

Figure 8: Executing the query “Find the topics of projects that ended in 2014” with the
MultiTable view on.

Page 15 of 65

INGDE

D3.1 - D8.1 First Component Release

Figure 9: Clicking on the + opens a window, where the user can hand select which columns to
display in the MultiTable view.

Find the topics of projects that ended in 2014

+ project_topics.project project_topics.topic

FP7-PEOPLE-201...
FP7-PEOPLE-200...
FP7-PEQOPLE-201...

FP7-PEOPLE-201...

Others

442
337
130
110
2692

ERED -
@ MultiTable view

projects.title projects.end_year projects.total_cost

H B

Action “Esta..
Make Rail Th..
ImProvemen...
Enhancing in...
Others 70

R R b

Figure 10: A smaller selection of columns and tables, hand selected by the user.

Page 16 of 65

I nz?;)D E D3.1 — D8.1 First Component Release

The user still has the option to view rows of data individually in this view by clicking on the
drop down symbol as seen in Figure 11.

Find the topics of projects that ended in 2014 ? ¢- m
@ MultiTable view
+ project_topics.project project_topics.topic projects.title projects.end_year projects.total_cost
FP7-PEOPLE-201.. 442 Action "Establis... 3
FP7-PEOPLE-200.. 337 Make Rail The z
FP7-PEOPLE-201.. 130 ImProvements ... 2
FP7-PEOPLE-201.. 110 Enhancing inter.. 2 _
Others 2692 Others 3702
Setting the path
fi ket
W 218878 Galileo.2011.1.7-1. B 2014 711492
use of Indoor
Galileo Operations
Utilizing the
potential of
NANOSATellites
row for the
148601 SPA.2012.3.5-01)) 2014 545480.6
1 implementation of

European Space
Policy and space
innovation

Figure 11: The user is able to view and verify the rows of visualized data by clicking on the
down tick symbol.

Page 17 of 65

I nc@)D E D3.1 — D8.1 First Component Release

Scenario 3: Adding Pipeline Operators

The third scenario allows the user to build data pipelines to further refine and explore their
data. The user can begin to build the data pipelines with the “MultiTable view” on. Currently,
there are 4 different pipeline operators: by filter, by superset, by overlap and by facet.

Each column of each query interpretation has 3 dots in the upper right hand corner that
display a window showing the available operators that can be added to the data exploration
pipeline.

by filter

The user can begin a “by filter” operation by first clicking on the drop down symbol to
display the rows and then on the three small dots, which display the window “explore by
filter” as seen in Figure 12 below. The “by filter” operator enables the user to search for data
according to a certain attribute in a column.

PILOT alpha

Find the topics of projects that ended in 2014 ? I el ‘m

@ MultiTable view

+ project_topics.project project_topics.topic projects title projects.end_year projects.framework_program

B
2 279
A z 12020 [
e
Development, construction,
. integration, and progress
row JTHCS-2011-1-ECO-
0 169005 22011 toward to two-phase device 2014 FP7
- * qualification on
Cell action
Explore by filter
row FP7-PEOPLE-2010 JTIoN =l
i 164964 A the Fagreening provide a way 2014 FP7
outof the paverty trap?
Application of MRI ta explore
myocardial structural
row FP7-PEOPLE2010- reorganisation accompanying
165777 g EsTra 2014 FP7
2 IEF contraction and the influence of
this on arrhythmogenesis the
normal and post infarct heart
row Real Time Wide Area Radiation
150112 SEC-2011.1.51 2014 FP?
3 surveillance System

Plasticity of the Empathic Brain:
Structural and Functional MRI
166841 ERC-SG-LS4 Studies on the Effect of 2014 FP7
Empathy Training on the Human
Brain and Prosocial Behaviour

Figure 12: Starting the data pipeline with the “by filter” operator.

Page 18 of 65

I ngD E D3.1 — D8.1 First Component Release

In Figure 12, the user has clicked on the drop down symbol for the second row of
visualizations in the MultiTable view to open 5 rows of data from the executed query

SELECT * FROM project_topics, projects WHERE ((projects.end_year=2014))
AND (project_topics.project=projects.unics_id)

The user then clicks on a certain value in the column to filter on, for example from the
column topics, the user chooses “FP7-PEOPLE-2010-1EF”.

» [o |

Multiple value

@ MultiTable view

projects.ec_call projects.ec_fund_scheme

projects.framework_program project_topics.topic . work_program project_topics.topic projects.start_year projects.tc

projects.start_year projects total_cost

projects.ec_max_contribution z Write : . : :
Reset 4 I.L

Figure 13: Results returned from “by filter” operator, filtered on “FP7-PEOPLE-2010-IEF”.

Figure 13 shows the results returned from the “by filter” operator. The user is then again
able to choose which columns they want to see by clicking on the + sign.

Page 19 of 65

I nﬁD E D3.1 — D8.1 First Component Release

Find the topics of projects that ended in 2014 | ? ‘ -n- m

#® MultiTable view

projects.ec_fund_scheme projects.framework_pregram project_topics.topic projects.start_year projects.total_cost
~ @ O O | /!

row 0 MC-IEF : FP7 FP7-PEOPLE-2010-EF 2012 E 244575

row 1 MC-IEF : FP7 FP7-PEOPLE-2010-IEF 2012 250659

row 2 MC-IEF : FP7 ' FP7-PEOPLE-2010-IEF =~ 2012 : 204587.2

row 3 MC-IEF " FP? FP7-PEOPLE-2010-EF ~ 2012 T 1928496

row 4 MC-IEF " FP7 " FP7-PEOPLE-2010-EF =~ 2011 235990

Figure 14: 5 rows of filtered data with visualizations. After filtering on
“FP7-PEOPLE-2010-IEF”, the data table becomes quite homogenous for ec fund scheme, and
framework program, which is not a surprise, but it can be also seen at a glance, that one
start year is outnumbering the others and how the projects total costs are distributed.

After clicking the drop down symbol, the user is able to see 5 rows of filtered data as shown
in Figure 14.

by superset

The user can begin a “by superset” operation by clicking on the three small dots on the first
column of a given table, and by clicking on the “Explore by superset” button. The “by
superset” operator enables the user to increase the size of a given set by releasing one of
the filters restricting it.

The idea is to find which filter to remove to get the smallest set containing the explored set.

Page 20 of 65

I nﬁD E D3.1 — D8.1 First Component Release

In the following example, the explored set is a list of all the projects started in 2017 and
ending in 2019.

The SQL query describing this set would be :

SELECT * FROM projects WHERE start_year = 2017 AND end_year = 2019

PILOT alpha

find end year of all projects ‘ ? | ‘ a- ‘

#® MultiTable view

+

Explore table projects.end_year projects.framework_program projects.total_cosi
Explore table

Explore by overlap

~ Explore by superset . l

row

p 2017 2019 H2020 187866

;"W 2017 2019 H2020 148635.6
rzow 2017 2019 H2020 2493300
;"w 2017 2019 H2020 183454.8
¥ omiz7 2019 H2020 1673250

- = ® 1
v_'_. 1

Figure 15: The user can click on the 3 dots at the beginning of the column to display the “by
superset” operator.

The user runs the “by superset” operation, as seen in Figure 15, which returns the set of all
projects that ended in 2019 :

SELECT * FROM projects WHERE end_year = 2019

The filter start_year = 2017 was removed.

Page 21 of 65

I nﬁD E D3.1 — D8.1 First Component Release

Future versions of the INODE pilot will have additional data available such as information
regarding how many records were contained in each set. In this example, the explored set
had 1968 records, the new set has 5748 records. If the user had kept the “start_year” filter
but removed the “end_year”, we would have had a set with 6845 records.

by overlap

The user can begin a “by overlap” operation by clicking on the three small dots at the top left
of the row, which display the window “Explore by overlap” as seen in Figure 16. The “by
overlap” operator enables the user to explore the data by returning neighbouring sets that
have the smallest overlap with the input set and overlap the least amongst themselves.

Find the topics of projects that ended in 2014 ‘ ? -u- ‘ Submit

@ MultiTable view
+ Evolore table t project_topics.topic projects.unics_id projects.acronym projects.title projects.ec_call projects.ec_1

Explore by averlap

FPT-PEOPLE201.. 442 " REFRESH 3° Actlon"Esta_ 3 FP7-PEOPLE. 442 MCHEF
ERT-REOFLE200. 337 ICARUS 3 MakeRal T.. 2 FRI-FEORLE . 176 P

~ Explore by superset EP7-PEOPLEZO0T. 130 IMAGINE 3 ImProvemen_ 2 FR7-PEORLE . 159 CP-FE
FP7-PEOPLE-201 Al FOCUS a Enhancing | 2 ERC-2008-A 139 MC-IRG
Others 2692 Othars 3699 Othars 3702 Othare 7795 Othare

Figure 16: The user selects the “by overlap” operator by clicking the 3 dots at the beginning
of the columns.

Page 22 of 65

I nC@)D E D3.1 — D8.1 First Component Release

Find the topics of projects that ended in 2014 ? ‘ ¢ ‘ m

#® MultiTable view

+ projects.ec_call projects.ec_fund_scheme projects.framework_program projects.start_year project_topics.topic projects.end_ye

. @ & @ | o |

25
27
. @ [[¥
25
116

: : 2 ERC-8G-LS5 4°
ERC-SG-AST 22
v ERC-SGL56 20
ERC-SG-LS4 19
Others 8

ERC-AG-PE 18 *
EAC-AG-PES 17
v ERC-AG-PE2 17
ERC-AG-PES 15
Others 75

Figure 17: 4 new sets of results and visualizations are returned from applying the “by
overlap” operator.

Page 23 of 65

I ngD E D3.1 — D8.1 First Component Release

PILOT alpha fo bou

T r———_v (2][@

® MutiTable view

me projects.framework program projects.start year project topics.topic projects.end_year projects.ec_max_contribution projects.star

2000000
2005050
2005050
2009030
Others

FP7 2009 FRTPEQRLEEE- 2010 82985.36 2009-05-01

2008
20072+
FP7 2009 :‘tié):Lt 20072 2011 171867.63 2009-03-02
FP7 2009 FRT.PEORLEIER: 2010 164208.45 2009-05-01

2008

FP7-PEOPLE-IEF- &
FP7 2009 i 2011 161563.92 20090515

FP7 2009 ;Z;;EDPLE EF 2011 164877.53 2009-06-01

2 20120101
‘ 27 20111001
2 201101
25 20111201
18 Others
FP7 2011 ERC-SG-PE9 2017 1169585.6 20111101
FP7 2011 ERC-SG-PE2 2016 1108000 2011-08-01
FP7 2012 ERC-SG-PEY 2016 1437200 20120101
FP7 2012 ERC-SG-PES 2017 1182606 20120101
FP7 2011 ERC-SG-PES 2016 1178839.2 20111001

Figure 18: Expanding the returned results shows the query results have been expanded to
include projects that ended in other years as well.

The initial query, “Find the topics of projects that ended in 2014”, only returns results from
projects that ended in 2014. The results returned by applying the “by overlap” operator are
subsets of data that share features in common with the original dataset, but are as distinct
as possible from one another.

The returned subsets correspond to the following queries:

e SELECT * FROM projects join project_topics on
(project_topics.project=projects.unics_id) WHERE
(projects.framework_ program=FP7) AND
(projects.ec_fund_scheme=ERC-SG), which returns: 2332 records

e SELECT * FROM projects join project topics on
(project_topics.project=projects.unics_id) WHERE
(projects.framework_program=FP7) AND
(projects.ec_fund_scheme=MC-IEF), which returns: 3911 records

Page 24 of 65

I ngD E D3.1 — D8.1 First Component Release

e SELECT * FROM projects join project topics on
(project_topics.project=projects.unics_id) WHERE
(projects.framework program=FP7) AND
(projects.ec_fund_scheme=ERC-AG), which returns: 1709 records

In these new sets, by scrolling to the right, as shown in Figure 18, the user can see that each
new set returned from the “by overlap” operator includes data on projects from other years
as well.

by facet

The user can begin a “by facet” operation by clicking on the three small dots at the top right
of a column, which display the window “Explore by facet” as seen in Figure 19. The “by
facet” operator enables the user to search for data which is clustered together based on the
attributes in the column they have selected to perform the operation on.

Find the topics of projects that ended in 2014 I ? ‘ ¢ m

. MultiTable view

+ project_topics.project project_topics.topl oo, -acronym projects.title projects.ec_call project:
. u Explore by facet 3 Action “Esta, 3 FP7-PEOPLE. 442 ° MCIEF
I g L 33 3 MakeRall . 2 FR7-PEOPLE. 176 cp
W P 130 I IMAGINE 3 ImProvemen. 2 FPT-PEOPLE. 159 CP-FP
FP7-PEOPLE-201 110 Focus 3 Enhancing i 2 ERC-2008-A 139 MC-IRG
Others 2692 Others 3699 Others 3702 Others 2735 Others

Figure 19: In this example, the user chose to use the “by facet” operator on the column
“project_topics.topic”.

During the “by facet” operator execution, the data of the explored set is grouped by the
values present in the selected column. The various groups are counted, and the 5 largest

Page 25 of 65

I nc@)D E D3.1 — D8.1 First Component Release

groups are returned as distinct SQL queries, displayed as separate tables in the pilot (with no
aggregation operation applied to the data).

In the example above, the user selected the column “project_topics.topic” to perform the
“by facet” operator on the set of all the projects that ended in 2014.

In Figure 20 we can see that the first 5 results are displayed together because they all have
the attribute “FP7-PEOPLE-2011-IEF”, as with the next 5 results who share the attribute
“FP7-PEOPLE-2009-RG".

The “by facet” operator execution returned 5 queries, describing the sets of all the projects
that ended in 2014, filtered by the following topics :

“FP7-PEOPLE-2011-1EF” which results in a set of 442 records
“FP7-PEOPLE-2009-RG” which results in a set of 337 records
“FP7-PEOPLE-2010-1EF” which results in a set of 330 records
“FP7-PEOPLE-2010-I0F” which results in a set of 222 records
“FP7-PEOPLE-2009-IRSES” which results in a set of 186 records

PILOT alpha Home: About

Find the topies of projects that ended in 2014 ? L Submit

@ MultiTable view

+ projects.eccall projects.ecfund_scheme projects.end_year projects.framework program project topics.topic projects.start.y

FP7-PEOPLE- Y- 014 . FP7-PEOPLE201T- o
0 2011-EF IEF

FP7-PEOPLE- SiBEE 5518 _— FP7PEOPLE201T-)
1 2011-EF IEF

FP7-PEOPLE FP7-PEOPLE2011

e MG-IEF 2014 FP7 i 2012
v FP7-PEOPLE . FP7-PEOPLE2011
3 IR MC-IEF 2014 FP7 i 2012
fow FP7-PEOPLE FP7-PEOPLE2011
4 st MC-IEF 2014 FP7 e 2012

row FP7-PEOPLE- . . FP7-PEOPLE2005-
i sios MCRG 2014 7 2010
EPT-PEOPLE- FP7-PEOPLEZ009-
& i .
A Sotb g MCIRG 2014 7 i 2010
FPLPEOPLE e i — FPTPEOPLEZ00S |
2 2010R6 RG
fow FP7-PEOPLE- MORG 204 o7 FPTPEOPLEZO0S-
3 2009RG g . ! RG .
fow FP7-PEOPLE- FP7-PEOPLE2008-
MCIRG 2014 7 2010
4 IRG-2008 G

Figure 20: Displays results of the 5 largest sets from the projects that ended in 2014, grouped
by topic.

Page 26 of 65

I n@D E D3.1 — D8.1 First Component Release

2.2 OpenDatalinking

We showcase the functionalities of the preliminary OpenDatalinking version through two
distinct use cases:

1. Cancer Biomarkers Use Case: Information Extraction from PubMed abstracts and
Linking with Uberon and OncoMX concepts

2. OpenDatalinking R&I Use Case: Enriching the SIRIS database by linking CORDIS
projects based on their NL Objectives

2.2.1 Information Extraction from PubMed abstracts and Linking with Uberon and

OncoMX concepts

For this use case, two information extraction systems -from ZHAW (syntax-based) and INF
(combining semantic role labelling and deep learning approaches)- were leveraged to extract
triples from PubMed articles and map these to existing concepts (anatomical entities) of the
Uberon ontology and to genes of the OncoMX database. The linked triples were then added
to the latest version of the OncoMX database. A brief description of each engine is given
below:

A. The ZHAW Information Extraction Engine

The ZHAW triple extraction system is used to transform unstructured text, in the form of
medical research abstracts taken from the PubMed database, into structured data to be
used to augment an existing relational database.

The output of the first part of the system comprises a set of subject-predicate-object triples,
in annotated natural language text format. For example, for the following PubMed paper

title:

Long Non-Coding RNA CCAT2 Promotes Breast Cancer Growth and Metastasis

The first stage involves extracting the following triples:

long non-coding RNA CCAT2 ; promotes ; breast cancer growth
long non-coding RNA CCAT2 ; promotes ; breast cancer metastasis

Since the system is syntax-based, we can leverage syntactic dependencies to give non-linear
entity extraction, as shown above. The entities breast cancer growth and breast cancer

Page 27 of 65

I n@D E D3.1 — D8.1 First Component Release

metastasis are constructed from the noun-phrase breast cancer growth and metastasis to
give a more accurate representation of the information contained in the text. This procedure
is performed over all coordinating conjunctions, and the power set of all permutations of
entities is returned. In addition, we also use syntactic rules to annotate the entities and
relations, as shown below:

RNA CCAT2 ; promotes ; breast cancer growth
RNA CCAT2 ; promotes ; breast cancer metastasis

In this example, is marked as an adjectival modifier of the entity, and RNA is
marked as a compound element of the entity, and the base token is CCAT2. These are based
on the syntactic dependencies of the sentence, as shown below:

punct
amod r OL‘J ” i
o e \gren] e Ny o \m
Long Non- Codmg RNA CCAT2 Promotes Breast Cancer Growth and Metastasis .'

Figure 21: Syntax parsing example from the ZHAW engine.

Other rules exist, and some function on predicates, such as auxiliary verbs and case
modifiers. For example, “may” in the relation “may reduce”, can be marked by the auxiliary
dependency. With these annotations, we can selectively reduce or expand the information
contained in the entities and relations, depending on the current information needed. If
more descriptive information is not required, we can reduce the above triples to the
following by including only compound entities:

RNA CCAT2 ; promotes ; breast cancer growth
RNA CCAT2 ; promotes ; breast cancer metastasis

This makes the system more extensible to open-domain text, since the level of information
required can be easily and efficiently modified based on both user and developer need. We
also use negation dependencies to give a polarity for each predicate, indicating whether the
triple represents a true or a false relation. For example, was not contained in would be
modified to was contained in [False].

The first stage of our system outputs these annotated triples, which can be fed into the next

stage of the pipeline. For this prototype, we take the use-case of the OncoMX database to
demonstrate how this information can be used to augment a structured database.

Page 28 of 65

I n@D E D3.1 — D8.1 First Component Release

After the triples are extracted from the PubMed article’s abstract and title, we link them to
the Uberon anatomical ontology and the OncoMX biomarkers database, in order to insert
them into the relational database. To do this, we take the annotated triple, and generate a
set of additional entities, varying by level of information. For example, with the entity long
non-coding RNA CCAT2, we have:

long non-coding RNA CCAT2
RNA CCAT2

CCAT2

long non-coding CCAT2

Which represents the power set of all components contained in the entity (since the number
of rules is constant, this remains computationally efficient, while a simple token-based
procedure would have exponential complexity). With this set, we search through the Uberon
ontology and OncoMX biomarkers database for possible matches. Because we break down
the entity itself, we can use a hash-table form of the ontology and database to facilitate
constant-time searching, as opposed to linear-time searching if the entity was not
annotated. In this example, we find that the gene CCAT2 is contained in the biomarkers set,
and we can link this entity with the associated ID for this gene. If a more specific match is
found using the additional components of the entity, we would instead select the more
descriptive option.

For the final stage, we take all extracted triples in which both the subject and object are
linked to both the Uberon ontology and the biomarkers database. For instance, if we have
the title from the PubMed paper 28105220:

Overexpression of THY1 Is Associated With Metastasis in Human Gallbladder Carcinoma
Our system would produce as a final output:

pubmed_id: 28105220

gene: THY1

anatomical_entity:UBERON:0002110

subject: overexpression of THY1

predicate: is associated with

object: metastasis in human gallbladder carcinoma
polarity: true

In order to augment OncoMX with additional information extracted from the PubMed
medical research database, we add our triples as a supplementary table to the OncoMX

Page 29 of 65

I nﬁ)D E D3.1 — D8.1 First Component Release

relational database. In order to do this, we link the subject and object of our triples with the
biomarker and anatomical_entity tables, shown below:

biomarker [table)
biomarker_id varchar[50]
gene_symbol varchar[20]
edm_subject varchar[100]
biomarker description varchar[3000]
test_is_paneal bool[1]
madified timestamptz{35, 6]
ga_state varchar[12]
access_rights varchar[10]
biomarker_fitie varchar[30]
anatomical_entity [tabls] biomarker_fype varchar[3]
i —01 uberon_anatomical i varchar[20]
—— I.: 1 I 0 rows 5>
] 0 f'EI'ﬂJSl 4>

Figure 22: The OncoMX anatomical entity and biomarker tables.

By attaching the gene-symbol from the natural language text to an entity, we can link each
triple to the existing database using the biomarker_id, meaning that each existing biomarker
is now augmented with supplementary structured information. For the Uberon ontology, we
use the anatomical_entity table, and link each triple using its associated Uberon ID.

Page 30 of 65

I n@D E D3.1 — D8.1 First Component Release

o — i

// Mviscus | R || T
— T ‘thoracic cavity element' »

9(/ isa—"" - 88 = e Sl

i e —— e —
: ’ -
: J—‘S—‘—{ ‘thoracic segment organ’ i

— g R R

R — (respirationorgan’) Crightlung”)
\ St e 3 e S
1 2 G D a—i=a ¥ o T
_ e _ ls-3 L _'lateral structura") el Jung edlSd Y

\ { ‘anatomical structure’ {’_" = B s isat (et lung
\ Lo e K O Ner
\\ e e T by _-'_v‘-éndoderm-derived structuré"} _
M . ! e, _ 53— S o= s~
\\ 4 __.sil.r?atiomlcal ?l?m.\f b ‘Y_J\ 7
"B - __7__5__?_\0.\IIZN0thln.g...)

Figure 23: Example of the UBERON ontology.

Uberon is a hierarchical anatomical ontology containing ID-numbered anatomical entities. As
described above, we associate the subject or object of each triple with a node in the Uberon
ontology. Currently, we consider all nodes which are sub-classes of the anatomical_entity
node. The structure of the ontology is shown above with the example node lung. When
matching to the ontology, we attempt to select the most specific node, in order to minimize
information loss. For instance, we link to the lower node pancreatic duct, rather than the
higher node pancreas. Each node also contains a list of synonyms and relational adjectives -
for example, lung can also be matched via pulmonary. The following table shows the number
of nodes contained in the ontology, and the number of additional nodes created using the
provided synonyms and relational adjectives. We also show the number of triples in which
both the subject and object are linked to a biomarker and a Uberon node (fully-linked), and
the number of triples linked to either the subject or object only (partially-linked).

Total Nodes 11741

Total Synonym Nodes 35622
Fully-Matched Triples 3638
Partially-Matched Triples 19765

Table 1: Triple information from the ZHAW engine.

When the best-match node for an entity has been found, we look up its associated ID, and
use this to annotate either the subject or object of the extracted triple. In this manner, we
can leverage information extracted from unstructured text to augment an existing database
and ontology with additional relations.

Page 31 of 65

I n@D E D3.1 — D8.1 First Component Release

B. The INF Information Extraction Engine

The INF information extraction pipeline is used to extract Open Information Extraction (OIE)
triples (S-P-O) from PubMed articles and map them to Uberon and OncoMX concepts. The
INF information extraction pipeline comprises the following steps:

e an in-place neural coreference resolution process: Given that our information retrieval
task requires the extraction of dependency relations from sentences, i.e. sets of the
form {subject, predicate, object}, and that in many cases the entity is replaced with its
coreferential pronoun we consider in-place coreference resolution as a crucial
pre-processing step on the each article’s body text, to improve the quality of the
extracted triples.

® a parallel triple extraction process as our core information extraction method: We
integrated triple extraction based on multiple OIE engines, relying on the
complementarity of different information retrieval approaches (clause-based,
learning-based, embeddings-based, etc.) to counter the loss of structural and semantic
information.

e an entity enrichment and cleaning process: Our pipeline concludes with a series of
post-processing activities, including linking the extracted entities to existing ontologies,
performing polarity detection on the phrases related to each triple as well as cleaning
the duplicate triples that were extracted via the parallel execution of the
aforementioned OIE engines.

Page 32 of 65

I nﬁ)D E D3.1 — D8.1 First Component Release

The graphical summary of our pipeline is as follows:

In-place =

B

Coreference
Resolution 5_
PubMed abstract Coreferenced-resolved
(NL text) text
& « Subject
P?Erat"e' Irlple + Predicate
Xtraction « Object

tn, (

Uberon ontology\ F—
anatomical entities) i . ubjec
(4 > Entity Enrichment .+ Predicate
-7 & Cleaning . Object —
. gene
- « Uberon entity Enriched
OncoMX db
(with linked
OncoMX db Linked triples triples)

(gene names)

Figure 24: INF Information extraction pipeline overview.

A sample of extracted triples linked to the Uberon and OncoMX concepts is shown below:

title Id subject predicate object sentiment sent_num ftriple_num engine uberon blomarker
risk faclors
mathyleos for breast
Methylenetetrahydrofolate tetrahydrofolate 2 i i
Reductase and Thymid... 15510613 il may be cancer positive 286494 T i UBERON:0000310 MTHFR
because of
MTHFR)... B
" in serain
Evaluation of Seven squ?:r;:il:ocr:a wers order o
Different Tumour Markers 2627971 antigen SCC analyzed create tumor positive 277343 1 ' UBERON.0000479 CRP
. marker
cancer ant...
panels...
a significantly p irespective
Impact of Hellcobacter higher level of was of H. pylori L 4 :
Pylori Infection on the... 17891020\ c1lgGthan observed atatimor | posils | 220210 1 HBRERON000017A MLICA
stage of...
MicroRMNA-224 Promotes protein 1
Tumor Progression in - 26187928 TNFiz beinduced TNFAIP1 and positive 126715 1 * UBERON.0008933 TNFAIP1
Non... SMAD4
for earyVT1
Malecular Regulation of an upregulation i stage but not
S100P in Human Lung 18575778 of S100P in lung determined more negative 212717 2 1 UBERON.0002048 S100P

Ad... adenocarcinomas advancedJT2

Figure 25: Sample of extracted triples linked with Uberon entities and OncoMX
genes/biomarkers from the INF engine.

Page 33 of 65

I n@D E D3.1 — D8.1 First Component Release

We used the extracted information to populate two new tables which were added to the
Postgres OncoMX database. The format of the extracted triples is aligned to that of the
ZHAW information extraction engine to ensure compatibility. The new tables have the
following properties:

e triples_fully_linked: contains extracted triples that are linked to both a Uberon
entity and an OncoMX gene/biomarker. We extracted 2,843 such triples.

e triples_partially_linked: contains extracted triples that are linked only to
gene/biomarker. We extracted 18,538 such triples.

Sample rows of the triples_fully_linked table containing triples from both the INF and ZHAW
engines, are shown below:

tri ful key |pmid gene |uberon uberonname subject predicate object polarity source
[PK]integer|integer text text text text text text text text
3142 25527410 XRCC5 UBERON: 0008933 [RUERRETIERO = ERE R L 0 and 1 repeats ancalleles The alleles of UNTR XRCCS polTrue infilt

2237 18089803 RET (IO ERR primary somatosensory cortex Germ line-activating allow this receptor to signal indepTrue infili
218 28249601 DKK3 UBERON: 0001235 BRI IR silencing of negativeallows dedifferentiation of adrenal True zhaw

219 28249601 DKK3 UBERON:0001851 [dHgd3 silencing of negativeallows dedifferentiation of adrenal True zhaw
223 28249601 DKK3 UBERON:0002369 ELIENEIRAIENTS stlencing of negativeallows dedifferentiation of adrenal True zhaw

1792 25103640 TFI27 UBERON: 0000310 [Iiei] Tnterferon alpha-inducibleprotein 27 TFT27 is an interfTrue infili
663 17063264 MTHFR UBERON: 0000310 i i functional polymorphialter risk of breast True zhaw
983 25563194 XRCC1 UBERON: 0002048 il risk for lung cancer among are variant Arg3996ln of XRCC1 True both
982 25563194 XRCC1 UBERON: 0002048 Rl risk for lung cancer among are variant Argl94Trp of XRCC1 True both
61 15941951 AMACR UBERDN:M35944risk of prostate cancAmong was highe those with low AMACR score True zhaw
508 17210081 IGFBP3 UBERON: 0000310 [ir i 16FBP3 expression in Among was hightpatients with benign breast oTrue zhaw
60 15941951 AMACR UBERUN:M35944risk of prostate cancAmong was hight those with low AMACR expressiTrue zhaw
37 23836800 PDCD4 UBERON: 0000479 [Er R P0CD4 expression Among was lowerdifferent differentiated cancTrue zhaw
2452 12620330 TP53 UBERON: 0000479 [EEi Y Screening for TPS3 miamplification cto analyze TPS3 mutations True infili
2453 12620330 P53 UBERON: 0001088 (TRt Al s creening for TPS3 miamplification cto analyze TPS3 mutations True infili
1996 23135313 CRP UBERUN:M@M?QC—reactive protein Chamyloid A SAA are acute wnflammatory True nfili
517 10940270 MUCSAC | UBERON: 0008933 iRt IR RETLE LTt 8 e L SR Apomucin (MUC2 , MUCanalysed using single and double immuTrue infili
2909 20037207 CYP1B1 UBERON: 0000310 [T oMT and CYP1B1 polynanalyzed employing polynerase chain rTrue infili
1848 24481866 TNF UBERON: 0002876 [a L CRRIAt ke C I £ 1 25ma levels of IL-:analyzed In this study True infili
2350 16424981 MTAL UBERUN:M@@M@Immunohistochemical tanalyzed quantitatively by a novel éTrue tnfill
1827 24737289 SELENBP] UBERON: 0000479 [Cr - amples of cancer ticanalyzed for SELENBPL expression by 20True 1infili
2349 16424981 MTAL UBERUN:@@@@MSImmunohistnchemicaI tanalyzed quantitatively by a novel éTrue infili

1826 24737289 SELENBPTUBERON:

WWBMSamples of cancer tizanalyzed for SELENBP1 expression by 20True infili
Figure 26: Sample rows of the triples_fully_linked table. The highlighted uberonname column
corresponds to each coded UBERON entity.

2.2.2 Enriching the SIRIS database by linking CORDIS projects based on their

natural-language Objectives

We leverage the natural language text of each project stored in the SIRIS database to find
semantic neighbours of the existing CORDIS projects, based on their vector representation
similarities. We then enrich the SIRIS database with the discovered neighbour pairs.

Page 34 of 65

I n@D E D3.1 — D8.1 First Component Release

We based our work on the CORDIS database provided by SIRIS in SQL (Postgres) format:

e We focused only on the unics_cordis.projects table, which contains —among other
fields- the projects acronyms, titles, objectives, unics_id, call etc.

e We aggregated information (NL text) from 3 sources: the project title, its objective
and call to create a corpus for each project. That corpus was used as the basis of our
entity matching method.

e Stopword cleaning was performed on the corpus (using NLTK).

e Each project’s corpus was encoded to its vector representation using fastText
embeddings

e We used the acquired semantic representations of each project to find the n=3
closest neighbours (based on angular distance).

e We created a table consisting of project pairs and their in-between distance based
on their NL information. Each project is paired with 3 other projects (its 3 closest
neighbours).

A graphical summary of our methodology is as follows:

8 N NL text_ S
aggregation

Project corpus
SIRIS database

J

—
Vv

Stopword N

cleaning —

Cleaned corpus

i

/—/
v
Vector S o°
representation
Emberdd ings
J
—
Project pairing r
Project neighbours Enriched

SIRIS database

Figure 27: Methodology overview.

Page 35 of 65

I ngD E D3.1 — D8.1 First Component Release

For the 50.823 CORDIS projects, we created 152.469 pairs (3 * 50.823) representing the 3
closest semantic neighbours of each project. The created project pairs were added to the
existing SIRIS database as a new project_neighbours table.

proje_ct # neigl:utmur distanpe P
4 [PE]integer [PK] integer numeric

541 217716 996820 0.07558257
542 996820 217716 0.07558336
5432 878580 220675 0.07574254
544 220675 878580 007574264
545 163602 153085 0.07601548
546 153085 163602 0.07601548
547 220670 175897 0.07566245
548 175897 220670 0.0766945
549 174304 171709 0.077428475
550 171709 174304 0.077428475
531 982280 220530 0.07879272
552 220530 982280 0.07879348
553 156644 155708 0.07881089

Figure 28: Sample rows from the created "project_neighbours" table.

A list of examples follows:

® Closest neighbours of TRESSPASS (a smart border control project) are also related to
border control and screening processes:

catted.loc[catted[vl acronym'] == "TRESSPASS']
Vi v2 dist vi_unics_id v2_unics_id vi_title v2_title vi_acronym vZ_acronym
robusT Risk basEd Screening and alert Protection of European seas and
32532 10844 21733 0471906 887445 149117 System T borders fhroug. TRESSPASS PERSEUS
32533 10844 23058 0473214 887445 147644 robusT Risk basEd Screening and alet Research on EGNOS/Galileo in Aviation TRESSPASS EGALITE

System f.. and Terr..

robusT Risk basEd Screening and alert

32534 10844 42255 0475244 887445 887578 System ..

CERNE Detection in Containers TRESSPASS cosmic

Figure 29: TRESSPASS project neighbours.

Page 36 of 65

I n@D E D3.1 — D8.1 First Component Release

® Closest neighbours of SOLARGAIN (related to solar heat gain control films for
energy-efficiency) are also solutions w.r.t energy efficient constructions:

catted.loc[catted['vl_acronym'] == "SOLARGAIN']

vl v2 dist v1_unics_id v2_unics_id vi_title v2_title wvi_acronym v2_acronym

5 Low-cost switchable reflective High thermal insulating window frames
50058 19986 18673 0.363324 147245 150288 polymeric solar.. Forench. SOLARGAIN THINFRAME

q Low-cost switchable reflective Energy efiicient greenhouse dehumidifier

1 1 7 7 A

50059 19086 12681 0.376281 147245 185207 polymeric solr... o w SOLARGAIN Drygair20
Low-cost switchable reflective Development and Validation of an SWS-
50960 19986 42013 0373171 147245 221982 polymeric solar. e SOLARGAIN HEATING

Figure 30: SOLARGAIN project neighbours.

® Closest neighbours of SOLUS (optical and ultrasound diagnostics of breast cancer)
are also diagnostic and biopsy solutions for chest diseases:

catted.loc[catted['vl_acronym'] == 'SOLUS']
w1 v2 dist v1_unics_id v2Z_unics_id vi_title v2_title wvi_acronym V2_acronym
Smart optical and ultrasound Laser and Ultrasound Co-Analyzer for -
1866 622 27671 0361932 216445 172588 diagnostics of br. thyroid n._ S0LUS LUCA
Smart optical and ultrasound Breast biopsy system guided by Positron 2
7 1
1867 622 1 0.371948 216445 148282 diagnostics of br.. Ersi. S0LUS MAMMOCARE
Smart optical and ultrasound Self-Healthcare for breast cancer
1868 622 1259 0383238 216445 224633 diagnostics of br Hetction e S0LUS SHINE

Figure 31: SOLUS project neighbours.

2.2.3 Mapping-Patterns Bootstrapper (MPBoot)

Manually writing ontologies and mappings starting from the relational schema of one or
more available data sources is a tedious and error-prone process. For this reason, in INODE
our objective is to automate as much as possible the generation of an ontology and
mappings that are well suited for extracting data from the available data sources.

MPBoot takes as input a configuration file, containing the connection parameters to a
relational data source, and produces an ontology and mappings that reflect how the data is
organized within the data source.

In its current form, MPBoot adheres to the W3C Direct Mapping Recommendation. The
bootstrapped ontology is a direct translation of the relational schema into the OWL
language, and the bootstrapped mappings link elements in the DB schema to their

corresponding OWL translations in the bootstrapped ontology.

Page 37 of 65

https://www.w3.org/TR/rdb-direct-mapping/

I n@D E D3.1 - D8.1 First Component Release

As a minimal example, assume the following table in the database:

Person
SSN Name Address
001 Alice here
002 Bob there

The bootstrapper will create in the ontology a class Person, whose individuals are built out of
the primary key of Person (SSN), and with three data properties corresponding to the three
attributes of the Person table. More precisely, the following ontology and target part of a
VKG mapping are generated:

Prefix Declaration:

@PREFIX : http://www.ongology.org/

Ontology:

<l-- Class declaration corresponding to the DB entity “Person” -->
<owl:Class rdf:about=":Person"/>

Mappings:

target: :person/{SSN} rdf:type Person .
:person/{SSN} :SSN {SSN}.
:person/{SSN} :Name {Name}.
:person/{SSN} :Address {Address} .

The “VKG-setting” above, consisting of a class definition in the ontology and three data
properties, when combined with a source part of the mapping that simply retrieves the
tuples in the Person table, would generate the following (virtual) RDF triples:

:person/001 rdf:type Person .

:person/001 :SSN “001” .

Page 38 of 65

http://www.ontology.org/%7Bssn
http://www.ontology.org/%7Bssn
http://www.ontology.org/%7Bssn
http://www.ontology.org/%7Bssn

I n@D E D3.1 - D8.1 First Component Release

:person/001 :Name “Alice” .
:person/001 :Address “here” .

:person/002 rdf:type Person .
:person/002 :SSN “002” .
:person/002 :Name “Bob” .
:person/002 :Address “there” .

MPBoot is invoked through the command-line-interface of Ontop. For instance, the
command we used to bootstrap the Skyserver ontology was the following:

.Jontop bootstrap -p boot-skyserver-drl6.properties \
-b 'http://www.semanticweb.org/skyserver'

-m boot-skyserver-drl6.obda \

-t boot-skyserver-dri6.owl

where the “-p” option indicates the file containing the connection parameters to the
Skyserver database, the “-b” option corresponds to our prefix declaration above, the “-m”
option indicates the output mapping file, and the “-t” option indicates the output ontology
file.

In Section 4 below, when talking about data models, we will provide and discuss
visualizations for the ontologies (Cordis, Skyserver, and Oncomx) bootstrapped through
MPBoot.

Page 39 of 65

I n@D E D3.1 — D8.1 First Component Release

3 API SpeciFicaTION

In this section we provide the API specification of INODE 1.0.

3.1 OpenDataDialog

In this subsection we describe the APl documentation of the current status of the integrated
OpenDataDialog that we demonstrated in Section 2.

3.1.1 NL-to-SQL and SQL-to-NL

Here we discuss the currently implemented and integrated functionality for translating a
natural language question to SQL and for explaining generated SQL-queries in natural
language.

NL-to-SQL

This request starts the systems {nalir+, soda} translation of a natural language query to a
specified number of SQL queries. There is no 1 to 1 NL-SQL mapping due to the inherent
ambiguity of natural language queries.

Page 40 of 65

I nﬁD E D3.1 — D8.1 First Component Release

nl-to-sql-translator

This controller is responsible for translating natural language queries to SQL queries

Translate NL to a number of SQL queries

Use one of our systems {nalir+, soda} to translate a natural language query 1o a number of SQL queries. There is no 110 1 Request samples

Payload

mapping due to incensed ambiguity in the natural language

applicati
syshame string
e Example: soda

The ni2sql engine o use: [soda, nalir+]
X-Request-ID string
méguinad Example: asdf769a876sdf

A unique 1D bound to the request

application/json

query sfring [0 .. 200) characters
Teplired The natural language query we want to search
database string
roquired

The name of the database

maxInterpretations integer <int32:

required The maximum number of interpretation to produce
maxResultsPrelInterpretation integer <int32
o The maximum number of results, per interpretation, to produce
Responses
> 200 0K

> 400 Bad Request

> 404 Not Found

Figure 32: NL to SQL translation.

This request stops the translation process bound to the 'X-Request-ID' unique id.

Strop the Translation process

Stops the translation process bound 10 the 'X-Reguest-ID' unique id

X-Request-ID string
required Example: asdf769aB76sdf

Aunique ID bound to the request already made

Responses
—200 OK
> 400 Bad Request

» 404 Not Found

Figure 33: Stopping the translation process.

Page 41 of 65

I nc@)D E D3.1 — D8.1 First Component Release

SQL-to-NL

The sql-to-nl-translator translates natural language queries to SQL queries.

SQL to NL translation BURY /2pi/sq12n1

Request samples

Use 3rd party software called Logos 1o provide a transiation of an SQL query 1o natural language

_—

g appicationfson
The sl query to translate

The the database name

Responses
> 2000k
> 400 Bag Roquost

> 404 Not Found

Figure 34: SQL to NL translation.

SQL Parser

This request parses the sql query into a json format (currently unable to handle nesting).

sql-parser

Parsers an sql query into a json (can't handle nestings)

Parse sql to json

Uses a 3rd party library to split an SQL query into tables, join conditions and filter conditions Request samples

Payload
applicationjson

sqlouery string
s The SQL query to parse

Responses

> 200 0K
> 400 Bad Request

> 404 Not Found

Figure 35: 5QL to JSON.

Page 42 of 65

I nﬁD E D3.1 — D8.1 First Component Release

SQL Executor

The SQL to tabular data request uses an SQL query to retrieve data from an underlying
RDBMS system (PostgreSQL) and returns the data in a tabular format.

sql-executor

This controller is responsible for generating tabular data from SQL queries

SQL to Tabular data

Request samples

Use an SQL query 1o retrieve data from an underlying RDBMS system and return them in Tabular format

Payload

%-Request-1D string application/json
Example: asdf769a876sdf
Aunique ID bound to the request

applicationjson

The sql query o execute

database string
Shiuired The name of the database
resultsumber integer <intaz>
The number of results to return
Responses
> 200 OK

> 400 Bad Reguest

> 404 Not Found

Figure 36: SQL to tabular data.

The stop execution request stops the execution of the query using the unique 'X-Request-ID'
bound with it.

Stop execution

Using the unique 'X-Request-ID’ stop the execution bound with it

X-Request-ID string
e el Example: asdf7692876sdf
Aunique 1D bound to the request already made

Responses
—200 0K
> 400 Bad Request

> 404 Not Found

Figure 37: Stopping the execution process.

Page 43 of 65

I nc@)D E D3.1 — D8.1 First Component Release

3.1.2 MultiTable Visualization

To make the INODE vision a reality, Fraunhofer had two major goals for the initiation period
of the project: (1) Visualize the data in a way, that provides a better overview over the result
than plain tables, and (2) add interaction capabilities to enable the user to explore the
results using pipeline operators.

For (1) we integrated methods into the pilot that run the relevant algorithms on the basis of
queries, which are generated as outputs of nl2sqgl translations and pipeline operators.
Although these algorithms are mainly used internally by the pilot to post-process queries,
they are also exposed as a separate endpoint (see Figure 32 below).

For (2), we added functionality to the MultiTable Visualization to trigger operations on
tables, columns, rows and individual cells of the result tables.

getHistogram

Responses
> 200 0K
> 400 Bad Request
> 404 Not Foun

> 500 Intemal Server Erro

Figure 38: The getHistogram APl endpoint produces a data table which is enriched by
metadata which allows the depiction of histograms and other data distributions in the
frontend without exceeding the browser capabilities.

3.1.3 Pipeline Operators

Here we discuss the currently implemented and integrated pipeline operators.

The pipeline operators are designed to manipulate and explore a database iteratively, while
seeing the data as multiple layers of overlapping sets. Each operator takes a single set

Page 44 of 65

I n@D E D3.1 — D8.1 First Component Release

defined by a conjunction of attribute/value equalities as input, and returns one or multiple
sets defined by a conjunction of attribute/value equalities, depending on the operation.

A REST API was designed to make them available to the pilot. As the pilot is only able to
handle SQL queries to define the data to display, each input set is described as a parsed SQL
query, telling in which tables the data is located, and which attribute/value filters are
defining it, and each output set is described as an SQL query, resulting in the set data if
executed.

Here is the APl documentation for each of these operators:

by filter

By filter allows the user to filter a given set on an additional attribute-value.

By Filter
Returns the input set filtered by the provided attribute=value Request samples
application/json
database string (Database name)
T—— Enum: "unics cordis" “sdss"

The name of the database to work on

inputSet > object (Inputset)
Tegur The definition of the operator input set (parsed SQL query)

filter > object (Filter)
St The new filter to be applied + "joinFilters®
+ "valueFilters":
Responses

v 200 Successful Response

application/json

error integer (E
Default: @
The error status, 1 if an error has oceurred, 0 otherwise

errorMsg string (Errormsg
The error message

Response samples

payload strings (Payload]
The list of queries resulting of the operation 200

“ 422 Validation Error

application/jsen

detail > abjects (Detail

Figure 39: By filter operator.

Page 45 of 65

INGDE

by superset

D3.1 — D8.1 First Component Release

By superset allows the user to get a wider scope on the data by returning the smallest set

completely overlapping with a given set.

By Superset

Returns the smallest set completely overlapping with the input set

applicationjson

database string (Database name)
equired i " "
e Enum: "unics cordis" "sdss"

The name of the database to work on

inputset > Inputset)
rEqUAre The definition of the operator input set (parsed SQL query)
Responses

v 200 Successful Response

application/jsen
error integer (Er
Default: &

The error status, 1 if an error has occurred, 0 otherwise

errorisg string (Errormsg]
The error message

payload trings 0ad)
The list of queries resulting of the operation

v 422 Validation Error

application/json

details

Figure 40: By superset operator.

Page 46 of 65

Request samples

joinFilters

"valueFilters"

I nc@)D E D3.1 — D8.1 First Component Release

by overlap

By overlap allows the user to find multiple neighbouring sets to a given set. It looks for the
sets with the minimum overlap to the input set and to each other.

By Qverlap

Request samples

Returns n neighbouring sets slightly overlapping with the input set and minimizing the overlap to each other

application/json

database string (Database name)
festiaerl Enum: | "unics_cordis" | "sdss"
The name of the database to work on

inputSet > object (Inputset)
FEilied The definition of the operator input set (parsed SQL query)
numberofsets integer (Numberofsets)

Default: 4 joinFilters":

The number of facets to be returned ueFilte
maxDuration number (Maxduration) Duration":

Default: 5 "numberc

The maximum duration in seconds allowed to run the operation]

Response samples
Responses
200

v 200 Successful Response

application/json

error integer (Error)
Default: @
The error status, 1 if an error has occurred, 0 otherwise
errorhsg string (Errormsg
The error message
payload strings (P d

The list of queries resulting of the operation
v 422 Validation Error

applicationyjson

detail>

Figure 41: By facet operator.

Page 47 of 65

I nc&?)D E D3.1 — D8.1 First Component Release

by facet

By facet allows the user to group an input set data by a list of attributes, and returns the
biggest groups.

By Facet

Request samples

Groups the input set items by a list of provided attributes and returns the n biggest resulting sets
application/json

database string (Dat
required

€ name)
Enum: | "unics cordis" “sdss"
The name of the database to work on

inputSet » object {Inputset)
required The definition of the operator input set (parsed SQL query)

attributes ti s (Attributes)
Fedtared The list of attributes to group the set items by

numberofFacets integer (Numberoffacet:
Default: 4
The number of facets to be returned

Responses

v 200 Successful Response

application/json

error integer (E
Default: ©
The error status, 1 if an error has occurred, 0 otherwise
errorhsg string (Errormsg)
The error message
payload f strings (Payload

The list of queries resulting of the operation

v 422 Validation Error

application/json

detail »

Figure 42: By facet operator.

Page 48 of 65

I ngD E D3.1 — D8.1 First Component Release

3.2 OpenDatalinking

Two engines (ZHAW, INF) perform triple extraction on NL-text using different approaches.
The endpoints (path, method, request, response) are the same for both engines.

OpenDatalinking Triple Extraction from NL-text Endpoint (REST Endpoint)
- Path & Method: URL/extract/ & POST request

- Description: The triple extraction engine receives a JSON file containing PubMed abstracts
as input, performs the aforementioned NLP operations depending on the engine (e.g.
syntactic parsing, coreference resolution, parallel triple extraction and triple cleaning), and
returns two csv files including extracted triples based on the given input mapped to Uberon
entities and Bionarkers.

A sample of a valid JSON file containing PubMed abstracts is given below:
e Sample JSON input file:

{"25584213": {"abstract": {"Background": "Smoking has been considered to be the major cause
of lung cancer. However, only a fraction of cigarette smokers develop this disease. This suggests
he importance of genetic constitution in predicting the individual's susceptibility towards lung
icancer. This genetic susceptibility may result from inherited polymorphisms in genes controlling
carcinogen metabolism and repair of damaged deoxyribonucleic acid (DNA). These repair
systems are fundamental to the maintenance of genomic integrity. X-ray repair cross
complimenting group | (XRCC1), a major DNA repair gene in the base excision repair (BER)
pathway. It is involved in repair by interacting with components of DNA at the site of damage.
Inconsistent results have been reported regarding the associations between the Arg399Gin
polymorphism of XRCC1. This study demonstrates the importance of recognition of this
relationship of lung carcinoma and genetic constitution of the person which will help guide
clinicians on the optimal screening of this disease.", "Aim": "To assess the role of XRCC1 gene
polymorphism (Arg399GIn) directly on the variation in susceptibility to development of lung
icancer in North Indian subjects.", "Materials and methods": "One hundred males with diagnosed
cases of lung cancer were recruited from Delhi State Cancer Institute (DSCI). Hundred healthy
olunteers were taken as controls. DNA isolation was done and Polymerase chain
reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) procedure undertaken to
amplify the region containing Arg/Gln substitution at codon 399 (in exon 10).", "Results": "XRCC1
gene polymorphism is associated with increased risk of lung cancer when the Arg/Arg genotype
as used as the reference group. The Arg/GIn and GIn/GIn was associated with statistically
increased risk for cancer.", "Conclusion": "Arg399GIn polymorphism in XRCC1 gene
polymorphism is associated with lung cancer in North Indian subjects and screening for this
polymorphism will help in targeting predisposed individuals and its prevention."}, "title":
""XRCC-1 Gene Polymorphism (Arg399GIn) and Susceptibility to Development of Lung Cancer in
Cohort of North Indian Population: A Pilot Study"}}

Page 49 of 65

I nﬁD E D3.1 — D8.1 First Component Release

- Request Body:
The format of the input:

curl -X POST "http://localhost:8000/extract/" -H "accept: application/json" -H "Content-Type:

multipart/form-data" -F "filename=@/filepath/file.json"

-Response:

Two csv files:

- fully_linked_triples_demo_YYYYMMDD_hhddss.csv : which contains extracted triples that
are linked to both a Uberon entity and a gene/biomarker.

- partially_linked_triples_demo_YYYYMMDD_hhddss.csv: which contains extracted triples
that are linked only to a gene/biomarker.

-Example:

A valid request followed by a response:

Request (The client uses a POST request to initiate triple extraction on a JSON file):
:~$ curl -X POST “http://localhost:8000/extract/" -H "accept: applicati
on/json" -H “Content-Type: multipart/form-data" -F "filename=@/home/infili/transl

ation/DimPapSandbox/triple-extraction/pubmed_sample2. json"

Response (The server performs triple extraction and the extracted triples mapped to genes
and Uberon entities):

Page 50 of 65

I n@D E D3.1 — D8.1 First Component Release

Server side:

NODE - Parallel Triple Extraction -

e e L e HOLMA-ENNE . 2

4.131t/s]

| 15183/15183 [00:05<00:00, 2710.991t/s]
151831t [00:11, 1305.571t/s]

Job finished in 24.76 seconds

Client side (received triples):

:~$ curl -X POST “http://localhost:8000 tract/" "accept: applicati
-H e: multipart/form-data" filename=@/home/infili/transl
ation/DimPap pubmed_samp]
["[{\"pmid\":Z *:\"XRCCI\",\"subject\
RCC1 g N L 1 j ia VL A"polarity\t:\"positiv
pmid\":25584213, \"XRCC1 "uberon\":\"
\"subject\ "Arg399G6Lln polymorphism in XRCC1 gene polymorphismy
,\"predica oclated object\":\" with lung cancer in North Indian subje
cts and sc ! r Arg399Gln polymorphism\", N e\",\"sourcey
mA T FLliN"}]"] ind I

A bad request followed by a response:

Request (The client uses a POST request to initiate triple extraction on a non-existent JSON
file):

i$ curl -X POST "http://

ltipart/form-data" -F "filename=@/

Page 51 of 65

I nﬁD E D3.1 — D8.1 First Component Release

Response (The server responds with an error):

% uvicorn tripleAPI-POST:app --reload --log-level error

Noima-EN_v0.2.

Error getting request body:

Client side:

Automated documentation for the above POST request (using ReDoc):

Q search...

Fast API (0.1.0)

Download OpenAPI specification: | Download

2D Extract

POST /extract/

Extract

multipart/form-data http://lab.sse.gr:8000/extract/

application/json

Responses

v 200 Successful Response

application/json
v 422 Validation Error
application/json

detail > objects (Deta

Figure 43: Download API.

Page 52 of 65

I n@D E D3.1 — D8.1 First Component Release

4 DatA MoODELS

In this section we provide the entity-relationship diagrams and corresponding ontology
views for the three use cases research & innovation policy making, astrophysics and cancer
research.

4.1 Research & Innovation Policy Making

An initial version of the Cordis database has been developed by Siris. Such a database has
been augmented with a table “project_neighbours”, containing pairs of projects with similar
objectives which have been derived through the automated analysis of texts in natural
language. The final database schema is as follows

Page 53 of 65

I n@D E D3.1 — D8.1 First Component Release

activity_types [table]

code

| Srowsl 1>

unics_common.institutions [table]
project_members [table]
territorial it nuts3_code
eu_territorial_units [table] unics_id
nuts_code ect
0 rows| 1> proje
activity_type
2521 rows| 2> -
project_member_roles [table] institution_id
code member_role
| | nuts3_code
srows| 1>
funding_schemes [tablg] =5 255170 rows|
code
projects [table] project_neighbours [table]
221 rowsl 1> unics_id project
ec_fund_scheme neighbour
ec_framework programs [table] cordis_ref
2 152,469 rows
name \O(ec_ref = -
framework_program
I 6 rows 1>

principal_investigator

people [table] project_erc_panels [table]
<3 50823 rows| 7> -
unics id project
panel
erc_panels [table]
|4,568 rows|1 > <2 8412 mwsl

code
part_of

erc_research_domains [table]

project_programmes [table]

)

code

project

<1 |26rows| 1>

programme
<2 56,486 mws|

4mws[1>

programmes [tablg]

code

project_subject_areas [table]

parent

project

subject_area
43,330 mws[

<1]6.378 rows] 2>

<2

subject_areas [table]

code

project_topics [table]

| 71 rows| 1> project
topic
topics [table] <2 | 45,154 rows

code

m|5,152 rows|1 >

Generated by SchemaSpy

Figure 44: Cordis database schema.

Page 54 of 65

I nED E D3.1 — D8.1 First Component Release

An ontology and relative mappings have been manually-crafted by Siris. The ontology has

the following structure (graph view):

Figure 45: Cordis ontology.

Nodes in such a graph represent classes in the ontology, and links between them represent
object properties between two classes (i.e., object properties whose domain and range have
been declared). In order not to overload the figure with too much information, we have left
the data properties out of the visualizations (and of all visualizations in this section).

Page 55 of 65

I n@D E D3.1 — D8.1 First Component Release

We used MPBoot to automatically bootstrap an ontology for the Cordis database:

-

Figure 46: Cordis bootstrapped ontology.

By using MPBoot, we can significantly speed up the time needed to generate ontologies.
However, we can observe that the structure of the bootstrapped ontology looks quite poor
when compared to the manually crafted ontology. One reason for this is the fact that the
W3C direct mapping recommendation, and therefore MPBoot, does not specify domains and
ranges of object properties. Therefore, all such object properties appear in our visualization
as connecting objects of the class “Thing”, which is a superclass of all other classes in the
ontology. This is one of the limitations of the Direct Mapping approach that we plan to
overcome in the remaining part of the project.

To overcome this specific limitation, we will consider the foreignkey-constraints linking
different tables in the database, and we will encode them through suitable OWL domain and
range axioms. We observe that currently MPBoot already uses these foreign keys to
generate object properties. More in general, we plan to consider different forms of patterns
that are present in the combination of keys and foreign keys of the database, and generate
corresponding combinations of OWL axioms that capture at best the semantics of the data
encoded through these patterns of database constraints. Importantly, we will consider not
only constraints that are explicitly declared in the database, but also constraints that can be
derived by analyzing the actual data.

Page 56 of 65

I n@D E D3.1 — D8.1 First Component Release

4.2 Astrophysics

For this scenario, we have limited the Skyserver-data (DR16) to a portion of the sky and
selected 5 tables of particular interest. Some of these tables were actually views, which were
missing the specification of foreign key-constraints in the schema. Since foreign keys are
crucial in order to understand the structure of the original data, we have added manually
those that we could infer from the available information. More specifically, some of the
foreign keys could be inferred by considering the view definitions, together with the
constraints specified on the database tables appearing in those views. Others were
discovered by actually looking at the data. As an output of all these activities, we devised the
following database schema:

Page 57 of 65

I n'@)D E D3.1 — D8.1 First Component Release

galspecline [tabla]

specobjid

specob] [table] [1.508 rows]
specobjid
bestobjid spplines [takle]
fluxobjic spacobjid
targetobjid
olateid =1 [2110 rows]
scienceprimary
mijd
plate
fierid
tile
sourcetypo
ra
photoobj [takl=] dec
objid cx
run oy
raerun o
camcol z
fioid zarr
moda Fearning
type class
flags htrnid
rowc
7 =1 | sossrows] 2=
psfmag_u
S neighbors [tabia]
R TIRG - objid
psfmag_i —
< 1][24,188,227 rows
psfrmag z

fibermag_u

fibermag_g

fibermag_r

fibermag i

fibermag =z

a9
q.r
ug

htrmid

fieldid

parentic

spacobjid

u

a

P

z

err_u

err_g

arr_r

arr_i

arr_z

1.156,468 rows| 2 >

Generated by SchemaSpy

Figure 47: SDSS database schema.

Page 58 of 65

I n@D E D3.1 — D8.1 First Component Release

We began to manually craft an ontology for the Skyserver scenario, along with mappings
connecting the ontology elements to queries over the Skyserver database schema. At the
moment, the ontology consists of 29 classes, 2 object properties, and 43 data properties:

o -

Figure 48: SDSS ontology.

Page 59 of 65

I nz?;)D E D3.1 — D8.1 First Component Release

The bootstrapped ontology, produced by MPBoot, again, displays a quite poor structure:

Figure 49: SDSS bootstrapped ontology.

For the same considerations as in the Cordis ontology, we decided to leave data properties
out of the visualization. The plan of improving MPBoot sketched for the Research &
Innovation setting is general, in the sense that it is not tailored towards that specific scenario
only, and applies also to this scenario.

4.3 Cancer Research

Entity-Relationship Diagram

Page 60 of 65

I n@D E D3.1 — D8.1 First Component Release

map_protein_disease_mutation [iztle]
peplide_d
map_uniprot_canonical id [tabla) ansembl_transcript_id
unipretkd_ac f—————o0< 1 unproti_ac
uniprotkb_canonical_ac <1 | 25,567 rows
[tssszrows] 1>

biomarker_fda_test trial [tanla]

| e rada name

test_submission

test_trial_id

<2 76 rows

biomarker_fda_test use [iabia

biomarker fda test [table] id

test_trada_name tast_trada_name

test_manulacturer tes!_submission

test_submission

biomarker_fda_ncit_tarm [table]

124 10WS

dod biomarker_fda_d

nzit_biomarker

biomarker_fda [takle]

<1

<1 1,187 raws

d

tost_trade_nama >
trada_ biomarker fda drug [izble]

tost_suomission
biomarker_fda_id

e} 364 rows| 2=

biomarker_drug

0 <1 85 rows
omarker_article [table]
disease [zbic| biomarker_internal_id
d mid
biomarker [table] ?
nams 2,858 rows]|
d
[#3 rows]z>
biomarker alias. [takle]
Ta03raws| 4=
biomarkar_intarnal_id
alias
<1 5,416 rows|
omarker_edrn [tak:le]
i
uboren_anatomical id
<2 | 838 rows]
differential_expression tablo]
project_study [takle] gene_symbal
study_id —
anatomical
doid
id = .
Ubsron_anatomical_id <1 460,322 rowe,
rame
<2 [rzrows] 1=
E RS
xref_gene_ensembl [iznio
healthy_expressien [table]
gon_symbol
— _ ansembl_gene_id
species [takle] ansemb|_gena_id
uberon_anatomical_d
specesid ———o0« | spaciesd
n_developmontal_id
<1 79,632 rows| 1> - -
2 rows
24,022,048 rows]
stage [lable]
‘j disease_mutation_tissue [taolo]
- ubaron_anatomical_id
[2@ rews]
disease_mutation_id
<2
diseasa_mutation_article [table]
prrid
disease_mutation_id
- - <1 257,726 rows |
disease_mutation [table]
i

disease mutation impact prediction [tablo]
d

7767463 raws| 4>

disensa_mutation_id

100
685,250 rows |
disease_mutation_site annotation [izbla)
o

disease_mutation_id

foara_key

<1 85,331 rows|

Genarated by SchomaSpy

Figure 50: Cancer Biomarker database schema.

Page 61 of 65

INGDE

Automatically-Generated Ontology with MPBoot (class view)

A Jowl: Thing|

' anatomical_entity

biomarker
biomarker_alias
biomarker_article
biomarker_edrn
biomarker_edrn_raw
biomarker_fda
biomarker_fda_drug
biomarker_fda_ncit_term
biomarker_fda_raw
biomarker_fda_test
biomarker_fda_test_trial
biomarker_fda_test_use

' differential_expression
© differential_expression_raw

' disease

' disease_mutation

' disease_mutation_article

' disease_mutation_impact_prediction
© disease_mutation_raw

' disease_mutation_site_annotation

' disease_mutation_tissue

healthy_expression
healthy_expression_mouse_raw
healthy_expression_raw
map_protein_disease_mutation
map_uniprot_canonical_id
project_study

' species
| stage
0 xref_gene_ensembl
0 xref_gene_uniprot
' xref_protein_refseq

(" owlThing
e

D3.1 — D8.1 First Component Release

(_ differential_expression

,.binmarlcel fda_test, us‘e‘_,
disease |

(disease_mutation

“biomarker fda_

a C_disease_mutation_raw

«_biomarker_fda te:i_ 3

5-a ? -
_shga]
52 .
I J!l‘tf protein _r\ef:t.q'
5-a -
g d‘ise‘ase mutation si‘le,anntta‘tiun-."
5-3 T - —
{ biomarker :
5-a -
'-u-lei_ge ne, nniprl-n.t.
5-2 E)
P-Hbalth"' EXRrEsSIon
5-2 g .
I;i-o.marktr edrn r-a-\.ll.'- 2
5-a -
%, biomarker, tdrr;)
L]) -)
'_ga_'i.-mmm fda mt__n-'u_n'_.
5-a . = .
."_b'mnarker arti-:l.e..'_
5-a = E 3
l;-ref,genc enseln-bl
5-a == = : E
aise-ase mutation_impact pl\ed'u:'li-nn i
52

f__biomarker_fda_ncit bern:;-i

Figure 51: Cancer Biomarker bootstrapped ontology.

Page 62 of 65

INGDE

A Portion of the In-progress Hand-Crafted Ontology

entity
continuant
independent continuant
biological entity
material entity (BFO:0000040)
material entity
occurrent
process (BFO:0000015)
planned process
process
developmental stage
experimental factor
material entity (BFO:0000040)
material entity
organism part
material property
disposition
quality
role
biological role
biomarker (CHEBL:59163)
biomarker panel
cancer biomarker
epigenetic biomarker
genomic biomarker
metabolomic biomarker
proteomic biomarker
single biomarker

D3.1 — D8.1 First Component Release

Figure 52: Cancer Biomarker hand-crafted ontology.

Page 63 of 65

I ncg%)D E D3.1 — D8.1 First Component Release

c— S

Figure 53: Visualizing the hand-crafted Cancer Biomarker ontology.

Page 64 of 65

