
 

 

 

 

 

 

 

 
Document Due Date: 31/08/2020 
Document Submission Date: 31/08/2020 

 

Work Packages 3, 4, 5, 6, 7, 8  
 
Type: Other (Software) 
Document Dissemination Level: Public 

 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

INODE 
Intelligent Open Data Exploration  

is funded by the Horizon 2020 Framework Programme of the EU for Research and Innovation. 
Grant Agreement number: 863410— INODE — H2020-EU.1.4.1.3.  

 

 

 



 

   D3.1 – D8.1 First Component Release 

 

 

 

 
 
(This page has been intentionally left blank) 

 
 
 
 
  

Page ​1​ of ​65 

 



 

   D3.1 – D8.1 First Component Release 

 

 

 

Executive Summary 
 
This deliverable provides the first software component release of the INODE project. The             
deliverable contains the following 6 sub-deliverables: 

● D3.1 Integrated Query Processing Services 
● D4.1 Data Linking and Modeling Services 
● D5.1 Data Access & Exploration Services 
● D6.1 User Assistance Services 
● D7.1 Multi-Modal Discovery Services 
● D8.1 Evaluation Service 

In Section 1 we give a brief overview of the INODE system architecture. In Section 2 we                 
provide screenshots of a working prototype of INODE 1.0. In Section 3 we list the API                
specification of the currently implemented services. In Section 4, we give a snapshot of the               
current data models of the three use cases. Note that a detailed description of these               
components is part of the next deliverables D3.2 to D8.2.  

 

 

Page ​2​ of ​65 

 



 

   D3.1 – D8.1 First Component Release 

 

 

 

Project Information 

Project Name Intelligent Open Data Exploration 

Project Acronym INODE 

Project Coordinator Zurich University of Applied Sciences (ZHAW), CH 

Project Funded by European Commission 

Under the Programme 
H2020-EU.1.4.1.3. - Development, deployment and 
operation of ICT-based e-infrastructures 

Call H2020-INFRAEOSC-2019-1 

Topic INFRAEOSC-02-2019 - Prototyping new innovative services 

Funding Instrument Research and Innovation action 

Grant Agreement No. 863410 

 

Document Information 

Document reference D3.1, D4.1, D5.1, D6.1, D7.1, D8.1 

Document Title First Component Release 

Work Package reference WP3, WP4, WP5, WP6, WP7, WP8 

Delivery due date 31/08/2020 

Actual submission date 31/08/2020 

Dissemination Level Public 

Authors(s) 

Belmpas Theofilos, Orest Gkini, Koutrika Georgia, Skoutas 
Dimitris, Stavroula Eleftheraki (ATHENA) 
Amer-Yahia Sihem, Boumaout Mourad, Personnaz Aurélien 
(CNRS) 
Lücke-Tieke Hendrik, May Thorsten (Fraunhofer) 
Litke Antonis, Papadakis Nikolaos, Papadopoulos Dimitris (Infili) 
Fabricius Maximilian, Subramanian Srividya (MPE)  
Bastian Frederic, Mendes de Farias Tarcisio (SIB) 
Massucci Francesco, Multari Francesco, Rull Guillem (SIRIS)  
Calvanese Diego, Lanti Davide, Mosca Alesandro, Guohui Xiao 
(UNIBZ)  
Braschler Martin, Kosten Catherine, Sima Ana, Smith Ellery, 
Stockinger Kurt (ZHAW) 

Page ​3​ of ​65 

 



 

   D3.1 – D8.1 First Component Release 

 

 

 

Table of Contents 

1 INODE System Architecture 5 

1.1. OpenDataDialog 6 

1.2 OpenDataLinking 6 

1.3 BackendServices 7 

2 INODE in Action 8 

2.1 OpenDataDialog 9 

Scenario 1: NL-to-SQL, SQL-to-NL and Simple Data Model Visualization 9 

Scenario 2: Adding More Advanced Results Visualization 15 

Scenario 3: Adding Pipeline Operators 18 

2.2 OpenDataLinking 27 

2.2.1 Information Extraction from PubMed abstracts and Linking with Uberon and           
OncoMX concepts 27 

The ZHAW Information Extraction Engine 27 

The INF Information Extraction Engine 32 

2.2.2 Enriching the SIRIS database by linking CORDIS projects based on their            
natural-language Objectives 34 

2.2.3  Mapping-Patterns Bootstrapper (MPBoot) 37 

3 API Specification 40 

3.1 OpenDataDialog 40 

3.1.1 NL-to-SQL and SQL-to-NL 40 

3.1.2 MultiTable Visualization 44 

3.1.3 Pipeline Operators 44 

3.2 OpenDataLinking 49 

4 Data Models 53 

4.1 Research & Innovation Policy Making 53 

4.2 Astrophysics 57 

4.3 Cancer Research 60 

  

Page ​4​ of ​65 

 



 

   D3.1 – D8.1 First Component Release 

 

 

 

1 INODE S​YSTEM​ A​RCHITECTURE 

In this section we give a brief overview of the INODE’s system architecture. The high-level               

architecture is illustrated in Figure 1. In a nutshell, INODE brings together the following main               

services that we discuss in detail in Sections 1.1, 1.2 and 1.3. 

● Data Access & Exploration​ services enable the user to communicate with the system. 

● User Assistance ​services allow the system to be reactive as well as anticipative of the               

user needs.  

● Multi-Modal Discovery​ services enable visual interaction and exploration.  

● Data Linking & Modeling​ services enable working with diverse datasets.  

● Integrated Query Processing services are responsible for the execution of the           

requests coming from the user-facing services.  

We refer to all the services shown in green as ​OpenDataDialog ​and to the services shown in                 

orange as ​OpenDataLinking​. The services shown in blue are ​BackendServices​. 

 

Figure 1: Major components of the INODE architecture. 

Page ​5​ of ​65 

 



 

   D3.1 – D8.1 First Component Release 

 

 

 

1.1. OpenDataDialog  

OpenDataDialog is the synergy of Data Access & Exploration, User Assistance, and            

Multi-Modal Discovery Services. We will now describe these services in more detail. 

Data Access & Exploration​. INODE introduces operators for the user to access and explore              

the data. For instance, in ​by example​, the user inputs examples of data and expects the                

system to return similar ones in the underlying dataset. For ​by analytics​, the user inputs               

analytics in the form of histograms, data distributions, aggregates (such as variance and             

counts), etc., and expects to receive data results that exhibit those analytics. For ​by natural               

language​, the user provides a query in natural language and INODE translates the query into               

SQL or SPARQL. INODE instantiates sets of items to allow operator composition.  

User Assistance​. INODE guides the user in data exploration by offering recommendations            

(i.e., queries that could be asked) and explanations, i.e., natural language descriptions of             

queries to further help the user understand system responses and the underlying data. 

Multi-Modal Discovery​. This layer implements means to explore the results of each            

exploration step and to manipulate operators. In doing so, it helps users understand the              

options they have for finding the data they need through ​visual exploration of results at each                

exploration step and  ​interactive manipulation and optimization​ of exploration operators. 

Visual exploration of intermediate results aims at enabling users to visually manage the             

actual content. When necessary, users can revise their exploration steps through interactive            

manipulation and optimization of exploration operators. 

1.2 OpenDataLinking 

OpenDataLinking is the synergy of Data Linking and Modeling Services that we will now              

describe in more detail. 

Data Linking and Modeling​. This layer enables linking of loosely coupled collections of             

datasets to support queries across them. INODE supports two different forms of mapping             

construction, namely ​data-driven mapping​, which is triggered when new data sources are            

added to the system, and ​task-driven mapping​, which is triggered when the execution of              

new analytic tasks is requested. In data-driven mapping, the structure and content of new              

data sources are analyzed and correlated to the ontology, so as to generate new mappings               

and propose them to the system designer for validation. In task-driven mapping, requested             

tasks are matched against available but not yet integrated data sources, and candidate             

sources with generated mappings are proposed, again for validation.  

Moreover, when integrating text data, INODE enables ​automatic knowledge graph          

generation​, by identifying entities and relationships in unstructured documents and          

integrating them into a queryable ontology. As a consequence, both structured and            

unstructured data can be linked and queried in a uniform way. 

Page ​6​ of ​65 

 



 

   D3.1 – D8.1 First Component Release 

 

 

 

 

1.3 BackendServices 

Integrated Query Processing​. This service is responsible for the execution of queries and can              

be considered as the back-end service for OpenDataDialog and OpenDataLinking. ​Source           

federation provides an integrated coherent view of the heterogeneous data sources (e.g.            

SQL, SPARQL, text) accessible in INODE to enable ontology-based data access. ​Query            

execution provides on-the-fly query rewriting by exploiting different forms of reasoning           

taking into account various data dimensions (such as temporal, spatial, etc). ​Data analytics             

focuses on efficient query transformation and execution to compute complex analytical           

functions. ​Answer justification generates compact and easy to understand explanations for           

query results. 

  

Page ​7​ of ​65 

 



 

   D3.1 – D8.1 First Component Release 

 

 

 

 

2 INODE ​IN​ A​CTION 

 

We have implemented a preliminary version of INODE 1.0. The following section describes             

how the OpenDataDialog and the OpenDataLinking services can be used. 

Referring to our system architecture shown in Figure 1, we use the following systems: 

OpenDataDialog: 

● Data Access and Exploration: 

○ By Natural Language:  

■ SODA+   1

■ NALIR+  2

○ By Example: 

■ CNRS-Pipelines  3

● User Guidance: 

○ Explanations: 

■ Logos  4

● Multi-Modal Discovery: 

○ Visual Result Exploration: 

■ FHG MultiTableExplorer  

■ FHG executor-processor library integration 

OpenDataLinking: 

● Data Linking and Modeling:  

○ Ontop-Bootstrapper (MPBoot) 

○ Noima : Infili-Extraction Engine  5

○ ZHAW-Extraction Engine 

 

 

1 We added NLP extensions to the original SODA source code. Blunschi, L., Jossen, C., Kossmann, D.,                 
Mori, M., & Stockinger, K. (2012). SODA: Generating SQL for business users. ​Proceedings of the VLDB                
Endowment​, ​5​(10), 932-943. 
2 A modified version of the NaLIR system: Li, F., & Jagadish, H. V. (2014). Constructing an interactive                  
natural language interface for relational databases. ​Proceedings of the VLDB Endowment​, ​8​(1), 73-84. 
3 Data Exploration Pipelines: http://www.inode-project.eu/blog/data-exploration-pipelines/ 
4 Kokkalis, A., Vagenas, P., Zervakis, A., Simitsis, A., Koutrika, G., & Ioannidis, Y. (2012, May). Logos: a                  
system for translating queries into narratives. In ​Proceedings of the 2012 ACM SIGMOD International              
Conference on Management of Data​ (pp. 673-676). 
5 Noima: http://www.inode-project.eu/blog/noima/ 

Page ​8​ of ​65 

 



 

   D3.1 – D8.1 First Component Release 

 

 

 

 

 

2.1 OpenDataDialog 

We will now explain the functionality of OpenDataDialog by walking through the following             

three different usage scenarios of increasing complexity. These scenarios demonstrate the           

operability and successful integration of various INODE-services. 

 

● Scenario 1: NL-to-SQL, SQL-to-NL and simple data model visualization 

● Scenario 2: Adding more advanced result visualization to Scenario 1 

● Scenario 3: Adding pipeline operators to Scenario 2 

 

Scenario 1: NL-to-SQL, SQL-to-NL and Simple Data Model Visualization 

Figure 2 shows the INODE pilot landing page where users will begin their data 

exploration/query journey. 

 

 

Figure 2: Landing page of INODE pilot. 

.  
1. Translating natural language to SQL​: Assume that a user wants to issue the query              

“Find the topics of projects that ended in 2014“ (see Figure 3) against the CORDIS               

database. Clicking the gear button opens a menu for the user to select which              

systems to use, in this case Nalir+ or SODA and which database to search, in this case                 

CORDIS. The users need to choose how many interpretations (i.e. different resulting            

SQL statements) they would like to have from each search system as well as how               

many results (rows of data from the database) from each interpretation they would             

like to see.  

 

Page ​9​ of ​65 

 



 

   D3.1 – D8.1 First Component Release 

 

 

 

 
Figure 3: Choosing the NL-to-SQL systems and the database. 

 
2. Clicking the question mark button opens a menu (Figure 4) with example queries             

intended to guide the users in their data exploration/query journey. These example            

queries show both the natural language question that a user would ask, as well as,               

how to formulate this query in a way that both query engines can understand and               

return the expected results from the database. Clicking the play button executes the             

query. These query examples are intended to help guide the user in their own query               

formulations.  

 

Page ​10​ of ​65 

 



 

   D3.1 – D8.1 First Component Release 

 

 

 

 
Figure 4: Example queries help the users to get a sense for what kind of queries are 

supported. 
 
After executing the query “Find the topics of projects that ended in 2014”, the user is shown                 

the following results from the query. As shown in Figure 5, the user sees several different                

interpretations of their query from the query engine they selected (seen in Figure 3). Each               

interpretation shows 5 results, or rows from the database. 

 

Page ​11​ of ​65 

 



 

   D3.1 – D8.1 First Component Release 

 

 

 

 
Figure 5: Two different interpretations of the query “​Find the topics of projects that ended in 

2014”. 

 

The following features help the user better understand the data which has been returned by 

their query.  

 

1. Clicking on “Explain” for each interpretation gives the user a natural           

language explanation of what data was returned in their query as seen in             

Figure 6. 
 

Page ​12​ of ​65 

 



 

   D3.1 – D8.1 First Component Release 

 

 

 

 
Figure 6: NL explain shows the natural language interpretation of the resulting SQL query​. 

 

2. Clicking on “Visualize” for each interpretation gives the user a visualization           

of the database model as seen in Figure 7. The tables queried by the user are                

highlighted in pink, and the executed SQL statement is also shown in order             

to provide the user with additional context for understanding their data and            

determining how to proceed in their exploration. 

 

Page ​13​ of ​65 

 



 

   D3.1 – D8.1 First Component Release 

 

 

 

 
Figure 7: For a given natural language query, the resulting SQL statements, the 

NL-explanation and the respective tables of the data model are shown that are used for 

answering the NL query. 
 
 
 
 
 
 
 
 

Page ​14​ of ​65 

 



 

   D3.1 – D8.1 First Component Release 

 

 

 

Scenario 2: Adding More Advanced Results Visualization 

Turning on the MultiTable view adds additional ways for the user to explore the data such as                 

charts (tailored to the data type of the column) and data aggregations for each              

interpretation of the given Natural Language query. Initially all of the columns from the              

resulting interpretations are visualized in the MultiTable view (as seen in Figure 8). The              

query shown in Figure 8 requires a join of two tables, which means that a significant number                 

of columns are visualized with the MultiTable view. All of the different tables can be viewed                

by scrolling to the right. The user has the option to hand select which columns are the most                  

interesting for their data exploration. Users can choose which columns and tables they want              

to visualize by clicking on the plus sign in the first row as seen in Figure 9. Figure 10 shows a                     

pared down version of the tables and columns a viewer might wish to see. 

 

 

Figure 8: Executing the query “Find the topics of projects that ended in 2014” with the 

MultiTable view on. 

 

Page ​15​ of ​65 

 



 

   D3.1 – D8.1 First Component Release 

 

 

 

 

Figure 9: Clicking on the + opens a window, where the user can hand select which columns to 

display in the MultiTable view. 

 

 

Figure 10: A smaller selection of columns and tables, hand selected by the user. 

Page ​16​ of ​65 

 



 

   D3.1 – D8.1 First Component Release 

 

 

 

The user still has the option to view rows of data individually in this view by clicking on the                   

drop down symbol as seen in Figure 11.  

 

 

Figure 11: The user is able to view and verify the rows of visualized data by clicking on the 

down tick symbol. 

 

 

 

 

 

 

Page ​17​ of ​65 

 



 

   D3.1 – D8.1 First Component Release 

 

 

 

Scenario 3: Adding Pipeline Operators 

The third scenario allows the user to build data pipelines to further refine and explore their                

data. The user can begin to build the data pipelines with the “MultiTable view” on. Currently,                

there are 4 different pipeline operators: by filter, by superset, by overlap and by facet.  

Each column of each query interpretation has 3 dots in the upper right hand corner that                

display a window showing the available operators that can be added to the data exploration               

pipeline.  

 

by filter 

The user can begin a “by filter” operation by first clicking on the drop down symbol to                 

display the rows and then on the three small dots, which display the window “explore by                

filter” as seen in Figure 12 below. The “by filter” operator enables the user to search for data                  

according to a certain attribute in a column.  

 

 

Figure 12: Starting the data pipeline with the “by filter” operator. 

 

Page ​18​ of ​65 

 



 

   D3.1 – D8.1 First Component Release 

 

 

 

In Figure 12, the user has clicked on the drop down symbol for the second row of                 

visualizations in the MultiTable view to open 5 rows of data from the executed query 

 

SELECT * FROM project_topics, projects WHERE ((projects.end_year=2014))       

AND (project_topics.project=projects.unics_id) 

 

The user then clicks on a certain value in the column to filter on, for example from the                  

column topics, the user chooses “FP7-PEOPLE-2010-IEF”.  

 

 

Figure 13: Results returned from “by filter” operator, filtered on “​FP7-PEOPLE-2010-IEF​”. 

 

Figure 13 shows the results returned from the “by filter” operator. The user is then again 

able to choose which columns they want to see by clicking on the + sign.  

 

Page ​19​ of ​65 

 



 

   D3.1 – D8.1 First Component Release 

 

 

 

 

Figure 14: 5 rows of filtered data with visualizations. After filtering on 

“FP7-PEOPLE-2010-IEF”, the data table becomes quite homogenous for ec fund scheme, and 

framework program, which is not a surprise, but it can be also seen at a glance, that one 

start year is outnumbering the others and how the projects total costs are distributed. 

 

After clicking the drop down symbol, the user is able to see 5 rows of filtered data as shown                   

in Figure 14.  

 

by superset 

The user can begin a “by superset” operation by clicking on the three small dots on the first                  

column of a given table, and by clicking on the “Explore by superset” button. The “by                

superset” operator enables the user to increase the size of a given set by releasing one of                 

the filters restricting it. 

The idea is to find which filter to remove to get the smallest set containing the explored set. 

Page ​20​ of ​65 

 



 

   D3.1 – D8.1 First Component Release 

 

 

 

In the following example, the explored set is a list of all the projects started in 2017 and                  

ending in 2019. 

The SQL query describing this set would be : 

 

SELECT * FROM projects WHERE start_year = 2017 AND end_year = 2019 

 

 

Figure 15: The user can click on the 3 dots at the beginning of the column to display the “by 

superset” operator. 

 

The user runs the “by superset” operation, as seen in Figure 15, which returns the set of all                  

projects that ended in 2019 : 

 

SELECT * FROM projects WHERE end_year = 2019 

 

The filter start_year = 2017 was removed. 

Page ​21​ of ​65 

 



 

   D3.1 – D8.1 First Component Release 

 

 

 

Future versions of the INODE pilot will have additional data available such as information              

regarding how many records were contained in each set. In this example, the explored set               

had 1968 records, the new set has 5748 records. If the user had kept the “start_year” filter                 

but removed the “end_year”, we would have had a set with 6845 records. 

 

by overlap 

The user can begin a “by overlap” operation by clicking on the three small dots at the top left                   

of the row, which display the window “Explore by overlap” as seen in Figure 16. The “by                 

overlap” operator enables the user to explore the data by returning neighbouring sets that              

have the smallest overlap with the input set and overlap the least amongst themselves. 

 

 

Figure 16: The user selects the “by overlap” operator by clicking the 3 dots at the beginning 

of the columns. 

 

Page ​22​ of ​65 

 



 

   D3.1 – D8.1 First Component Release 

 

 

 

 

Figure 17: 4  new sets of results and visualizations are returned from applying the “by 

overlap” operator. 

 

Page ​23​ of ​65 

 



 

   D3.1 – D8.1 First Component Release 

 

 

 

 

Figure 18: Expanding the returned results shows the query results have been expanded to 

include projects that ended in other years as well. 

  

The initial query, “Find the topics of projects that ended in 2014”, only returns results from                

projects that ended in 2014. The results returned by applying the “by overlap” operator are               

subsets of data that share features in common with the original dataset, but are as distinct                

as possible from one another. 

The returned subsets correspond to the following queries: 

 

● SELECT * FROM projects join project_topics on 

(project_topics.project=projects.unics_id) WHERE 

(projects.framework_program=FP7) AND 

(projects.ec_fund_scheme=ERC-SG), which returns: 2332 records 

 

● SELECT * FROM projects join project_topics on 

(project_topics.project=projects.unics_id) WHERE 

(projects.framework_program=FP7) AND 

(projects.ec_fund_scheme=MC-IEF), which returns: 3911 records 

 

Page ​24​ of ​65 

 



 

   D3.1 – D8.1 First Component Release 

 

 

 

● SELECT * FROM projects join project_topics on 

(project_topics.project=projects.unics_id) WHERE 

(projects.framework_program=FP7) AND 

(projects.ec_fund_scheme=ERC-AG), which returns: 1709 records  

 

In these new sets, by scrolling to the right, as shown in Figure 18, the user can see that each                    

new set returned from the “by overlap” operator includes data on projects from other years               

as well.  

 

by facet 

The user can begin a “by facet” operation by clicking on the three small dots at the top right                   

of a column, which display the window “Explore by facet” as seen in Figure 19. The “by                 

facet” operator enables the user to search for data which is clustered together based on the                

attributes in the column they have selected to perform the operation on.  

 

 

Figure 19: In this example, the user chose to use the “by facet” operator on the column 

“project_topics.topic”.  

 

During the “by facet” operator execution, the data of the explored set is grouped by the                

values present in the selected column. The various groups are counted, and the 5 largest               

Page ​25​ of ​65 

 



 

   D3.1 – D8.1 First Component Release 

 

 

 

groups are returned as distinct SQL queries, displayed as separate tables in the pilot (with no                

aggregation operation applied to the data). 

In the example above, the user selected the column “project_topics.topic” to perform the             

“by facet” operator on the set of all the projects that ended in 2014. 

In Figure 20 we can see that the first 5 results are displayed together because they all have                  

the attribute “FP7-PEOPLE-2011-IEF”, as with the next 5 results who share the attribute             

“FP7-PEOPLE-2009-RG”.  

The “by facet” operator execution returned 5 queries, describing the sets of all the projects               

that ended in 2014, filtered by the following topics : 

 

● “FP7-PEOPLE-2011-IEF” which results in a set of 442 records 

● “FP7-PEOPLE-2009-RG”  which results in a set of 337 records 

● “FP7-PEOPLE-2010-IEF” which results in a set of 330 records 

● “FP7-PEOPLE-2010-IOF” which results in a set of 222 records 

● “FP7-PEOPLE-2009-IRSES”  which results in a set of 186 records 

 

 

Figure 20: Displays results of the 5 largest sets from the projects that ended in 2014, grouped 

by topic. 

Page ​26​ of ​65 

 



 

   D3.1 – D8.1 First Component Release 

 

 

 

2.2 OpenDataLinking 

We showcase the functionalities of the preliminary OpenDataLinking version through two           

distinct use cases: 

 

1. Cancer Biomarkers Use Case: Information Extraction from PubMed abstracts and          

Linking with Uberon and OncoMX concepts 

2. OpenDataLinking R&I Use Case: Enriching the SIRIS database by linking CORDIS           

projects based on their NL Objectives 

 

2.2.1 Information Extraction from PubMed abstracts and Linking with Uberon and           

OncoMX concepts 

For this use case, two information extraction systems -from ZHAW (syntax-based) and INF             

(combining semantic role labelling and deep learning approaches)- were leveraged to extract            

triples from PubMed articles and map these to existing concepts (anatomical entities) of the              

Uberon ontology and to genes of the OncoMX database. The linked triples were then added               

to the latest version of the OncoMX database. A brief description of each engine is given                

below: 

 

A. The ZHAW Information Extraction Engine 

The ZHAW triple extraction system is used to transform unstructured text, in the form of               

medical research abstracts taken from the PubMed database, into structured data to be             

used to augment an existing relational database. 

 

The output of the first part of the system comprises a set of subject-predicate-object triples,               

in annotated natural language text format. For example, for the following PubMed paper             

title: 

 

Long Non-Coding RNA CCAT2 Promotes Breast Cancer Growth and Metastasis 

The first stage involves extracting the following triples: 

 

long non-coding RNA CCAT2 ; promotes ; breast cancer growth 

long non-coding RNA CCAT2 ; promotes ; breast cancer metastasis 

 

Since the system is syntax-based, we can leverage syntactic dependencies to give non-linear             

entity extraction, as shown above. The entities ​breast cancer growth and ​breast cancer             

Page ​27​ of ​65 

 



 

   D3.1 – D8.1 First Component Release 

 

 

 

metastasis are constructed from the noun-phrase ​breast cancer growth and metastasis to            

give a more accurate representation of the information contained in the text. This procedure              

is performed over all coordinating conjunctions, and the power set of all permutations of              

entities is returned. In addition, we also use syntactic rules to annotate the entities and               

relations, as shown below: 

 

long non-coding ​RNA ​CCAT2 ; promotes ; ​breast cancer ​growth 

long non-coding ​RNA ​CCAT2 ; promotes ; ​breast cancer ​metastasis 

 

In this example, ​long non-coding ​is marked as an adjectival modifier of the entity, and ​RNA ​is                 

marked as a compound element of the entity, and the base token is CCAT2. These are based                 

on the syntactic dependencies of the sentence, as shown below: 

 

 

Figure 21: Syntax parsing example from the ZHAW engine. 

 

Other rules exist, and some function on predicates, such as auxiliary verbs and case              

modifiers. For example, “may” in the relation “may reduce”, can be marked by the auxiliary               

dependency. With these annotations, we can selectively reduce or expand the information            

contained in the entities and relations, depending on the current information needed. If             

more descriptive information is not required, we can reduce the above triples to the              

following by including only compound entities: 

 

RNA CCAT2 ; promotes ; breast cancer growth 

RNA CCAT2 ; promotes ; breast cancer metastasis 

 

This makes the system more extensible to open-domain text, since the level of information              

required can be easily and efficiently modified based on both user and developer need. We               

also use negation dependencies to give a polarity for each predicate, indicating whether the              

triple represents a true or a false relation. For example, ​was not contained in would be                

modified to​ was contained in [False]​. 
 

The first stage of our system outputs these annotated triples, which can be fed into the next                 

stage of the pipeline. For this prototype, we take the use-case of the OncoMX database to                

demonstrate how this information can be used to augment a structured database. 

Page ​28​ of ​65 

 



 

   D3.1 – D8.1 First Component Release 

 

 

 

 

After the triples are extracted from the PubMed article’s abstract and title, we link them to                

the Uberon anatomical ontology and the OncoMX biomarkers database, in order to insert             

them into the relational database. To do this, we take the annotated triple, and generate a                

set of additional entities, varying by level of information. For example, with the entity ​long               

non-coding RNA CCAT2​, we have: 

 

long non-coding RNA CCAT2 

RNA CCAT2  

CCAT2  

long non-coding CCAT2 

 

Which represents the power set of all components contained in the entity (since the number               

of rules is constant, this remains computationally efficient, while a simple token-based            

procedure would have exponential complexity). With this set, we search through the Uberon             

ontology and OncoMX biomarkers database for possible matches. Because we break down            

the entity itself, we can use a hash-table form of the ontology and database to facilitate                

constant-time searching, as opposed to linear-time searching if the entity was not            

annotated. In this example, we find that the gene CCAT2 is contained in the biomarkers set,                

and we can link this entity with the associated ID for this gene. If a more specific match is                   

found using the additional components of the entity, we would instead select the more              

descriptive option. 

 

For the final stage, we take all extracted triples in which both the subject and object are                 

linked to both the Uberon ontology and the biomarkers database. For instance, if we have               

the title from the PubMed paper 28105220: 

 

Overexpression of THY1 Is Associated With Metastasis in Human Gallbladder Carcinoma 

 

Our system would produce as a final output: 

 

pubmed_id​: 28105220 

gene​: THY1  

anatomical_entity​:UBERON:0002110  

subject​: overexpression of THY1  

predicate​: is associated with 

object​: metastasis in human gallbladder carcinoma  

polarity​: true 

 

In order to augment OncoMX with additional information extracted from the PubMed            

medical research database, we add our triples as a supplementary table to the OncoMX              

Page ​29​ of ​65 

 



 

   D3.1 – D8.1 First Component Release 

 

 

 

relational database. In order to do this, we link the subject and object of our triples with the                  

biomarker ​and ​anatomical_entity ​tables, shown below: 

 

 

Figure 22: The OncoMX anatomical entity and biomarker tables. 

 

By attaching the gene-symbol from the natural language text to an entity, we can link each                

triple to the existing database using the ​biomarker_id​, meaning that each existing biomarker             

is now augmented with supplementary structured information. For the Uberon ontology, we            

use the ​anatomical_entity ​table, and link each triple using its associated Uberon ID. 

 

Page ​30​ of ​65 

 



 

   D3.1 – D8.1 First Component Release 

 

 

 

  

Figure 23: Example of the UBERON ontology. 

Uberon is a hierarchical anatomical ontology containing ID-numbered anatomical entities. As           

described above, we associate the subject or object of each triple with a node in the Uberon                 

ontology. Currently, we consider all nodes which are sub-classes of the ​anatomical_entity            

node. The structure of the ontology is shown above with the example node ​lung​. When               

matching to the ontology, we attempt to select the most specific node, in order to minimize                

information loss. For instance, we link to the lower node ​pancreatic duct​, rather than the               

higher node ​pancreas​. Each node also contains a list of synonyms and relational adjectives -               

for example, ​lung ​can also be matched via ​pulmonary​. The following table shows the number               

of nodes contained in the ontology, and the number of additional nodes created using the               

provided synonyms and relational adjectives. We also show the number of triples in which              

both the subject and object are linked to a biomarker and a Uberon node (fully-linked), and                

the number of triples linked to either the subject or object only (partially-linked). 

 

Total Nodes 11741 

Total Synonym Nodes 35622 

Fully-Matched Triples 3638 

Partially-Matched Triples 19765 

 

 ​Table 1: Triple information from the ZHAW engine. 

 

When the best-match node for an entity has been found, we look up its associated ID, and                 

use this to annotate either the subject or object of the extracted triple. In this manner, we                 

can leverage information extracted from unstructured text to augment an existing database            

and ontology with additional relations. 

 

Page ​31​ of ​65 

 



 

   D3.1 – D8.1 First Component Release 

 

 

 

B. The INF Information Extraction Engine 

The INF information extraction pipeline is used to extract Open Information Extraction (OIE)             

triples (S-P-O) from PubMed articles and map them to Uberon and OncoMX concepts. The              

INF information extraction pipeline comprises the following steps:  

 

● an ​in-place neural coreference resolution process: Given that our information retrieval           

task requires the extraction of dependency relations from sentences, i.e. sets of the             

form {subject, predicate, object}, and that in many cases the entity is replaced with its               

coreferential pronoun we consider in-place coreference resolution as a crucial          

pre-processing step on the each article’s body text, to improve the quality of the              

extracted triples. 

● a ​parallel triple extraction process as our core information extraction method: ​We             

integrated triple extraction based on multiple OIE engines, relying on the           

complementarity of different information retrieval approaches (clause-based,       

learning-based, embeddings-based, etc.) to counter the loss of structural and semantic           

information. 

● an ​entity enrichment and cleaning process: Our pipeline concludes with a series of             

post-processing activities, including linking the extracted entities to existing ontologies,          

performing polarity detection on the phrases related to each triple as well as cleaning              

the duplicate triples that were extracted via the parallel execution of the            

aforementioned OIE engines. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page ​32​ of ​65 

 



 

   D3.1 – D8.1 First Component Release 

 

 

 

The graphical summary of our pipeline is as follows:  

 

 

Figure 24: INF Information extraction pipeline overview. 

 

A sample of extracted triples linked to the Uberon and OncoMX concepts is shown below: 

 

 

Figure 25: Sample of extracted triples linked with Uberon entities and OncoMX 

genes/biomarkers from the INF engine. 

Page ​33​ of ​65 

 



 

   D3.1 – D8.1 First Component Release 

 

 

 

We used the extracted information to populate two new tables which were added to the 

Postgres OncoMX database. The format of the extracted triples is aligned to that of the 

ZHAW information extraction engine to ensure compatibility. The new tables have the 

following properties: 

 

● triples_fully_linked​: contains extracted triples that are linked to both a Uberon           

entity and an OncoMX gene/biomarker. We extracted 2,843 such triples. 

● triples_partially_linked​: contains extracted triples that are linked only to 

gene/biomarker. We extracted 18,538 such triples. 

 

Sample rows of ​the​ triples_fully_linked​ table containing triples from both the INF and ZHAW 

engines, are shown below:  

 

Figure 26: Sample rows of the triples_fully_linked table. The highlighted uberonname column 

corresponds to each coded UBERON  entity. 

 

2.2.2 Enriching the SIRIS database by linking CORDIS projects based on their            

natural-language Objectives 

We leverage the natural language text of each project stored in the SIRIS database to find                

semantic neighbours of the existing CORDIS projects, based on their vector representation            

similarities. We then enrich the SIRIS database with the discovered neighbour pairs. 

 

Page ​34​ of ​65 

 



 

   D3.1 – D8.1 First Component Release 

 

 

 

 

We based our work on the CORDIS database provided by SIRIS in SQL (Postgres) format: 

 

● We focused only on the ​unics_cordis.projects table, which contains –among other           

fields- the projects acronyms, titles, objectives, unics_id, call etc. 

● We aggregated information (NL text) from 3 sources: the ​project title​, its ​objective             

and ​call ​to create a corpus for each project. That corpus was used as the basis of our                  

entity matching method. 

● Stopword cleaning was performed on the corpus (using NLTK). 

● Each project’s corpus was encoded to its vector representation using fastText           

embeddings 

● We used the acquired semantic representations of each project to find the n=​3             

closest neighbours (based on angular distance). 

● We created a table consisting of project pairs and their in-between distance based             

on their NL information. Each project is paired with 3 other projects (its 3 closest               

neighbours). 

 

A graphical summary of our methodology is as follows: 

 

 

 

Figure 27: Methodology overview. 

  

Page ​35​ of ​65 

 



 

   D3.1 – D8.1 First Component Release 

 

 

 

For the 50.823 CORDIS projects, we created 152.469 pairs (3 * 50.823) representing the 3               

closest semantic neighbours of each project. The created project pairs were added to the              

existing SIRIS database as a new ​project_neighbours​ table. 

 

 

Figure 28: Sample rows from the created "project_neighbours" table. 

 

A list of examples follows: 

 

● Closest neighbours of TRESSPASS (a smart border control project) are also related to             

border control and screening processes: 

 

 

 

Figure 29: TRESSPASS project neighbours. 

 

  

Page ​36​ of ​65 

 



 

   D3.1 – D8.1 First Component Release 

 

 

 

● Closest neighbours of SOLARGAIN (related to solar heat gain control films for            

energy-efficiency) are also solutions w.r.t energy efficient constructions: 

 

Figure 30: SOLARGAIN project neighbours. 

 

● Closest neighbours of SOLUS (optical and ultrasound diagnostics of breast cancer)           

are also diagnostic and biopsy solutions for chest diseases: 

 

 

Figure 31: SOLUS project neighbours. 

 

2.2.3  Mapping-Patterns Bootstrapper (MPBoot) 

Manually writing ontologies and mappings starting from the relational schema of one or             

more available data sources is a tedious and error-prone process. For this reason, in INODE               

our objective is to automate as much as possible the generation of an ontology and               

mappings that are well suited for extracting data from the available data sources. 

MPBoot takes as input a configuration file, containing the connection parameters to a             

relational data source, and produces an ontology and mappings that reflect how the data is               

organized within the data source. 

In its current form, MPBoot adheres to the ​W3C Direct Mapping Recommendation​. The             

bootstrapped ontology is a direct translation of the relational schema into the OWL             

language, and the bootstrapped mappings link elements in the DB schema to their             

corresponding OWL translations in the bootstrapped ontology.  

 

Page ​37​ of ​65 

 

https://www.w3.org/TR/rdb-direct-mapping/


 

   D3.1 – D8.1 First Component Release 

 

 

 

As a minimal example, assume the following table in the database: 

 

Person 

SSN Name Address 

001 Alice here 

002 Bob there 

 

The bootstrapper will create in the ontology a class Person, whose individuals are built out of                

the primary key of Person (SSN), and with three data properties corresponding to the three               

attributes of the Person table. More precisely, the following ontology and target part of a               

VKG mapping are generated: 

 

Prefix Declaration: 

 

@PREFIX : http://www.ongology.org/ 

 

Ontology: 

 

<!-- Class declaration corresponding to the DB entity “Person” --> 

<owl:Class rdf:about=":Person"/> 

 

Mappings: 

 

target:  :person/​{​SSN}  rdf:type Person .  

              :person/​{​SSN} :SSN        {SSN} . 

              :person/​{​SSN} :Name     {Name} .  

              :person/​{​SSN} :Address {Address} .  

 

The “VKG-setting” above, consisting of a class definition in the ontology and three data 

properties, when combined with a source part of the mapping that simply retrieves the 

tuples in the Person table, would generate the following (virtual) RDF triples: 

 

 

:person/001 rdf:type Person . 

:person/001 :SSN “001” . 

Page ​38​ of ​65 

 

http://www.ontology.org/%7Bssn
http://www.ontology.org/%7Bssn
http://www.ontology.org/%7Bssn
http://www.ontology.org/%7Bssn


 

   D3.1 – D8.1 First Component Release 

 

 

 

:person/001 :Name “Alice” . 

:person/001 :Address “here” . 

 

:person/002 rdf:type Person . 

:person/002 :SSN “002” . 

:person/002 :Name “Bob” . 

:person/002 :Address “there” . 

 

MPBoot is invoked through the command-line-interface of Ontop. For instance, the           

command we used to bootstrap the Skyserver ontology was the following: 

 

./ontop bootstrap -p boot-skyserver-dr16.properties \ 

-b 'http://www.semanticweb.org/skyserver' 

-m boot-skyserver-dr16.obda \ 

-t boot-skyserver-dr16.owl 

 

where the “-p” option indicates the file containing the connection parameters to the             

Skyserver database, the “-b” option corresponds to our prefix declaration above, the “-m”             

option indicates the output mapping file, and the “-t” option indicates the output ontology              

file. 

 

In Section 4 below, when talking about data models, we will provide and discuss              

visualizations for the ontologies (Cordis, Skyserver, and Oncomx) bootstrapped through          

MPBoot.  

Page ​39​ of ​65 

 



 

   D3.1 – D8.1 First Component Release 

 

 

 

 

3 API S​PECIFICATION 

 

In this section we provide the API specification of INODE 1.0. 

 

3.1 OpenDataDialog 

In this subsection we describe the API documentation of the current status of the integrated               

OpenDataDialog that we demonstrated in Section 2. 

 

3.1.1 NL-to-SQL and SQL-to-NL 

Here we discuss the currently implemented and integrated functionality for translating a            

natural language question to SQL and for explaining generated SQL-queries in natural            

language. 

 

NL-to-SQL 

This request starts the systems {nalir+, soda} translation of a natural language query to a               

specified number of SQL queries. There is no 1 to 1 NL-SQL mapping due to the inherent                 

ambiguity of natural language queries. 

 

Page ​40​ of ​65 

 



 

   D3.1 – D8.1 First Component Release 

 

 

 

 

Figure 32: NL to SQL translation. 

 

This request stops the translation process bound to the 'X-Request-ID' unique id. 

 

 
Figure 33: Stopping the translation process. 

Page ​41​ of ​65 

 



 

   D3.1 – D8.1 First Component Release 

 

 

 

SQL-to-NL 

The sql-to-nl-translator translates natural language queries to SQL queries. 

 

 

Figure 34: SQL to NL translation. 

 

SQL Parser 

This request parses the sql query into a json format (currently unable to handle nesting). 

 

 

 

Figure 35: SQL to JSON. 

 

 

Page ​42​ of ​65 

 



 

   D3.1 – D8.1 First Component Release 

 

 

 

SQL Executor 

The SQL to tabular data request uses an SQL query to retrieve data from an underlying 

RDBMS system (PostgreSQL) and returns the data in a tabular format.  

Figure 36: SQL to tabular data. 

 

The stop execution request stops the execution of the query using the unique 'X-Request-ID' 

bound with it. 

 

 

Figure 37: Stopping the execution process. 

Page ​43​ of ​65 

 



 

   D3.1 – D8.1 First Component Release 

 

 

 

3.1.2 MultiTable Visualization 

To make the INODE vision a reality, Fraunhofer had two major goals for the initiation period                

of the project: (1) Visualize the data in a way, that provides a better overview over the result                  

than plain tables, and (2) add interaction capabilities to enable the user to explore the               

results using pipeline operators.  

For (1) we integrated methods into the pilot that run the relevant algorithms on the basis of                 

queries, which are generated as outputs of nl2sql translations and pipeline operators.            

Although these algorithms are mainly used internally by the pilot to post-process queries,             

they are also exposed as a separate endpoint (see Figure 32 below). 

For (2), we added functionality to the MultiTable Visualization to trigger operations on             

tables, columns, rows and individual cells of the result tables.  

 

 

Figure 38:​ The getHistogram API endpoint produces a data table which is enriched by 

metadata which allows the depiction of histograms and other data distributions in the 

frontend without exceeding the browser capabilities. 

 

3.1.3 Pipeline Operators 

Here we discuss the currently implemented and integrated pipeline operators.  

The pipeline operators are designed to manipulate and explore a database iteratively, while             

seeing the data as multiple layers of overlapping sets. Each operator takes a single set               

Page ​44​ of ​65 

 



 

   D3.1 – D8.1 First Component Release 

 

 

 

defined by a conjunction of attribute/value equalities as input, and returns one or multiple              

sets defined by a conjunction of attribute/value equalities, depending on the operation.  

A REST API was designed to make them available to the pilot. As the pilot is only able to                   

handle SQL queries to define the data to display, each input set is described as a parsed SQL                  

query, telling in which tables the data is located, and which attribute/value filters are              

defining it, and each output set is described as an SQL query, resulting in the set data if                  

executed. 

Here is the API documentation for each of these operators: 

 

by filter 

By filter allows the user to filter a given set on an additional attribute-value. 

 

Figure 39: By filter operator. 

 

 

Page ​45​ of ​65 

 



 

   D3.1 – D8.1 First Component Release 

 

 

 

by superset 

By superset allows the user to get a wider scope on the data by returning the smallest set                  

completely overlapping with a given set. 

 

Figure 40: By superset operator. 

 

 

 

 

 

 

 

 

 

 

 

 

Page ​46​ of ​65 

 



 

   D3.1 – D8.1 First Component Release 

 

 

 

by overlap 

By overlap allows the user to find multiple neighbouring sets to a given set. It looks for the                  

sets with the minimum overlap to the input set and  to each other. 

 

Figure 41: By facet operator. 

 

 

 

 

 

 

 

 

 

Page ​47​ of ​65 

 



 

   D3.1 – D8.1 First Component Release 

 

 

 

by facet 

By facet allows the user to group an input set data by a list of attributes, and returns the                   

biggest groups. 

 

Figure 42: By facet operator. 

 

 

 

 

 

 

 

 

Page ​48​ of ​65 

 



 

   D3.1 – D8.1 First Component Release 

 

 

 

3.2 OpenDataLinking 

Two engines (ZHAW, INF) perform triple extraction on NL-text using different approaches.            

The endpoints (path, method, request, response) are the same for both engines.  

 

OpenDataLinking Triple Extraction from NL-text Endpoint (REST Endpoint) 

 

- ​Path & Method:​ URL/extract/  ​&​ POST request 

 

- ​Description: The triple extraction engine receives a JSON file containing PubMed abstracts             

as input, performs the aforementioned NLP operations depending on the engine (e.g.            

syntactic parsing, coreference resolution, parallel triple extraction and triple cleaning), and           

returns two csv files including extracted triples based on the given input mapped to Uberon               

entities and Bionarkers.  

 

A sample of a valid JSON file containing PubMed abstracts is given below:  

 

● Sample JSON input file:  

 
{"25584213": {"abstract": {"Background": "Smoking has been considered to be the major cause            

of lung cancer. However, only a fraction of cigarette smokers develop this disease. This suggests               

the importance of genetic constitution in predicting the individual's susceptibility towards lung            

cancer. This genetic susceptibility may result from inherited polymorphisms in genes controlling            

carcinogen metabolism and repair of damaged deoxyribonucleic acid (DNA). These repair           

systems are fundamental to the maintenance of genomic integrity. X-ray repair cross            

complimenting group I (XRCC1), a major DNA repair gene in the base excision repair (BER)               

pathway. It is involved in repair by interacting with components of DNA at the site of damage.                 

Inconsistent results have been reported regarding the associations between the Arg399Gln           

polymorphism of XRCC1. This study demonstrates the importance of recognition of this            

relationship of lung carcinoma and genetic constitution of the person which will help guide              

clinicians on the optimal screening of this disease.", "Aim": "To assess the role of XRCC1 gene                

polymorphism (Arg399Gln) directly on the variation in susceptibility to development of lung            

cancer in North Indian subjects.", "Materials and methods": "One hundred males with diagnosed             

cases of lung cancer were recruited from Delhi State Cancer Institute (DSCI). Hundred healthy              

volunteers were taken as controls. DNA isolation was done and Polymerase chain            

reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) procedure undertaken to        

amplify the region containing Arg/Gln substitution at codon 399 (in exon 10).", "Results": "XRCC1              

gene polymorphism is associated with increased risk of lung cancer when the Arg/Arg genotype              

was used as the reference group. The Arg/Gln and Gln/Gln was associated with statistically              

increased risk for cancer.", "Conclusion": "Arg399Gln polymorphism in XRCC1 gene          

polymorphism is associated with lung cancer in North Indian subjects and screening for this              

polymorphism will help in targeting predisposed individuals and its prevention."}, "title":           

"XRCC-1 Gene Polymorphism (Arg399Gln) and Susceptibility to Development of Lung Cancer in            

Cohort of North Indian Population: A Pilot Study"}} 

Page ​49​ of ​65 

 



 

   D3.1 – D8.1 First Component Release 

 

 

 

 

- ​Request Body: 

 

The format of the input: 

 
curl -X POST "http://localhost:8000/extract/" -H "accept: application/json" -H "Content-Type:         

multipart/form-data" -F "filename=@/filepath/file.json" 

 

-​Response:  

 

Two csv files:  

 

- ​fully_linked_triples_demo_YYYYMMDD_hhddss.csv ​: which contains extracted triples that        

are linked to both a Uberon entity and a gene/biomarker. 

- ​partially_linked_triples_demo_YYYYMMDD_hhddss.csv​: which contains extracted triples      

that are linked only to a gene/biomarker. 

 

-​Example: 

 

A valid request followed by a response: 

 

Request (The client uses a POST request to initiate triple extraction on a JSON file): 

 

 

Response (The server performs triple extraction and the extracted triples mapped to genes             

and Uberon entities): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page ​50​ of ​65 

 



 

   D3.1 – D8.1 First Component Release 

 

 

 

Server side: 

 

 

Client side (received triples): 

 

 

 

A bad request followed by a response: 

 

Request (The client uses a POST request to initiate triple extraction on a non-existent JSON               

file): 

 

 

 

Page ​51​ of ​65 

 



 

   D3.1 – D8.1 First Component Release 

 

 

 

Response (The server responds with an error): 

 

 

 

Client side: 

 

 

 

Automated documentation for the above POST request (using ReDoc): 

 

 

 

Figure 43: Download API. 

 

  

Page ​52​ of ​65 

 



 

   D3.1 – D8.1 First Component Release 

 

 

 

4 D​ATA​ M​ODELS 

 

In this section we provide the entity-relationship diagrams and corresponding ontology           

views for the three use cases ​research & innovation policy making​, ​astrophysics and ​cancer              

research​. 

4.1 Research & Innovation Policy Making 

An initial version of the Cordis database has been developed by Siris. Such a database has                

been augmented with a table “project_neighbours”, containing pairs of projects with similar            

objectives which have been derived through the automated analysis of texts in natural             

language. The final database schema is as follows 

 

 

 

Page ​53​ of ​65 

 



 

   D3.1 – D8.1 First Component Release 

 

 

 

 

Figure 44: Cordis database schema. 

Page ​54​ of ​65 

 



 

   D3.1 – D8.1 First Component Release 

 

 

 

An ontology and relative mappings have been manually-crafted by Siris. The ontology has             

the following structure (graph view): 

 

 

Figure 45: Cordis ontology. 

 

Nodes in such a graph represent classes in the ontology, and links between them represent               

object properties between two classes (i.e., object properties whose domain and range have             

been declared). In order not to overload the figure with too much information, we have left                

the data properties out of the visualizations (and of all visualizations in this section). 

 

 

 

 

 

 

Page ​55​ of ​65 

 



 

   D3.1 – D8.1 First Component Release 

 

 

 

We used MPBoot to automatically bootstrap an ontology for the Cordis database: 

 

 

Figure 46: Cordis bootstrapped ontology. 

 

By using MPBoot, we can significantly speed up the time needed to generate ontologies.              

However, we can observe that the structure of the bootstrapped ontology looks quite poor              

when compared to the manually crafted ontology. One reason for this is the fact that the                

W3C direct mapping recommendation, and therefore MPBoot, does not specify domains and            

ranges of object properties. Therefore, all such object properties appear in our visualization             

as connecting objects of the class “Thing”, which is a superclass of all other classes in the                 

ontology. This is one of the limitations of the Direct Mapping approach that we plan to                

overcome in the remaining part of the project.  

To overcome this specific limitation, we will consider the foreignkey-constraints linking           

different tables in the database, and we will encode them through suitable OWL domain and               

range axioms. We observe that currently MPBoot already uses these foreign keys to             

generate object properties. More in general, we plan to consider different forms of patterns              

that are present in the combination of keys and foreign keys of the database, and generate                

corresponding combinations of OWL axioms that capture at best the semantics of the data              

encoded through these patterns of database constraints. Importantly, we will consider not            

only constraints that are explicitly declared in the database, but also constraints that can be               

derived by analyzing the actual data. 

Page ​56​ of ​65 

 



 

   D3.1 – D8.1 First Component Release 

 

 

 

4.2 Astrophysics 

For this scenario, we have limited the Skyserver-data (DR16) to a portion of the sky and                

selected 5 tables of particular interest. Some of these tables were actually views, which were               

missing the specification of foreign key-constraints in the schema. Since foreign keys are             

crucial in order to understand the structure of the original data, we have added manually               

those that we could infer from the available information. More specifically, some of the              

foreign keys could be inferred by considering the view definitions, together with the             

constraints specified on the database tables appearing in those views. Others were            

discovered by actually looking at the data. As an output of all these activities, we devised the                 

following database schema:  

 

Page ​57​ of ​65 

 



 

   D3.1 – D8.1 First Component Release 

 

 

 

 

Figure 47: SDSS database schema. 

 

Page ​58​ of ​65 

 



 

   D3.1 – D8.1 First Component Release 

 

 

 

We began to manually craft an ontology for the Skyserver scenario, along with mappings 

connecting the ontology elements to queries over the Skyserver database schema. At the 

moment, the ontology consists of 29 classes, 2 object properties, and 43 data properties: 

 

 

Figure 48: SDSS ontology. 

 

 

 

 

 

 

 

 

 

 

 

 

Page ​59​ of ​65 

 



 

   D3.1 – D8.1 First Component Release 

 

 

 

The bootstrapped ontology, produced by MPBoot, again, displays a quite poor structure: 

 

 

Figure 49: SDSS bootstrapped ontology. 

 

For the same considerations as in the Cordis ontology, we decided to leave data properties               

out of the visualization. The plan of improving MPBoot sketched for the Research &              

Innovation setting is general, in the sense that it is not tailored towards that specific scenario                

only, and applies also to this scenario. 

 

4.3 Cancer Research 

 

Entity-Relationship Diagram 

 

 

Page ​60​ of ​65 

 



 

   D3.1 – D8.1 First Component Release 

 

 

 

 

Figure 50: Cancer Biomarker database schema. 

Page ​61​ of ​65 

 



 

   D3.1 – D8.1 First Component Release 

 

 

 

 

Automatically-Generated Ontology with MPBoot (class view) 

 

 

Figure 51:  Cancer Biomarker bootstrapped ontology. 

 

 

 

 

 

Page ​62​ of ​65 

 



 

   D3.1 – D8.1 First Component Release 

 

 

 

A Portion of the In-progress Hand-Crafted Ontology 

 

 

Figure 52: Cancer Biomarker hand-crafted ontology. 

 

Page ​63​ of ​65 

 



 

   D3.1 – D8.1 First Component Release 

 

 

 

 
Figure 53: Visualizing the hand-crafted Cancer Biomarker ontology. 

Page ​64​ of ​65 

 


