I nC@)D E Second Component Release

Document Due Date: 28/02/2021
Document Submission Date: 28/02/2021

Work Packages 3,4,5,6,7, 8

Type: Other (Software)
Document Dissemination Level: Public

INODE
Intelligent Open Data Exploration
is funded by the Horizon 2020 Framework Programme of the EU for Research and Innovation.
Grant Agreement number: 863410— INODE — H2020-EU.1.4.1.3.

I n@D E D3.2 — Second Component Release

(This page has been intentionally left blank)

Page 1 of 85

I n@D E D3.2 — Second Component Release

Executive Summary

This deliverable provides the second software component release of the INODE project and
includes all 6 services covered by WPs 3 to 8. We assume that the reader is familiar with
Deliverable D3.1-D8.1, which describes INODE 1.0, i.e. the status of INODE at project month
10. This deliverable describes the status and the new activities of INODE at project month 16.

- Section 1 presents all new INODE features: new components that are added as well
as how existing components are upgraded. It provides a summary of the main
features and pointers to the respective sections that provide more details.

- Section 2 and Section 3 describe INODE-SQL 2.0 and INODE-SPARQL 1.0, the two
user-facing services for SQL and SPARQL data sources, respectively

- Section 4 describes the API extensions of the INODE services and Section 5 the data
model extensions of the three use cases “Research & Innovation Policy Making”
(CORDIS), “Astrophysics” (SDSS), and “Cancer Research” (OncoMX) with respect to
INODE 1.0.

Page 2 of 85

INGDE

Project Information

Project Name
Project Acronym
Project Coordinator
Project Funded by

Under the Programme

Call
Topic

Grant Agreement No.

Document reference
Document Title

Work Package reference
Delivery due date
Actual submission date
Dissemination Level

D3.2 — Second Component Release

Intelligent Open Data Exploration

INODE

Zurich University of Applied Sciences (ZHAW), CH
European Commission

H2020-EU.1.4.1.3. - Development, deployment and
operation of ICT-based e-infrastructures
H2020-INFRAEOSC-2019-1

INFRAEOSC-02-2019 - Prototyping new innovative services
Research and Innovation action

863410

Document Information

D3.2

Second Component Release

WP3, WP4, WP5, WP6, WP7, WP8

28/02/2021

28/02/2021

Public

Koutrika Georgia, Eleftheraki Stavroula, Glenis Apostolis,
Mandamadiotis Antonis (ATHENA)

Amer-Yahia Sihem, Patil Yogendra, Personnaz Aurélien (CNRS)
Liicke-Tieke Hendrik, May Thorsten (Fraunhofer)

Litke Antonis, Papadakis Nikolaos, Papadopoulos Dimitris (Infili)
Fabricius Maximilian, Subramanian Srividya (MPE)

Bastian Frederic, Mendes de Farias Tarcisio, Stockinger Heinz
(SIB)

Massucci Francesco, Multari Francesco, Rull Guillem (SIRIS)
Calvanese Diego, Lanti Davide, Mosca Alesandro, Guohui Xiao
(UNIBZ)

Braschler Martin, Brunner Ursin, Kosten Catherine, Sima Ana,
Smith Ellery, Stockinger Kurt (ZHAW)

Page 3 of 85

I n@D E D3.2 — Second Component Release

Table of Contents

1 THE INODE SYSTEM 6
1.1 Integrated Query Processing 11
1.1.1 Query execution over rich types of data sources 12
1.1.2 Source Federation 13
1.1.3 Data Analytics 13
1.1.4 Answer Justification 13

1.2 Data Linking and Modelling 14
1.2.1 Mapping Construction 14
1.2.2 Knowledge Base Construction 14

1.3 Data Access & Exploration 15
1.3.1 By Natural Language 15
1.3.2 Pipeline Operators 18

1.4 User Assistance 20
1.4.1 Explanations 20
1.4.2 Recommendations 22

1.5 Multi-Modal Discovery 26
1.5.1 Visual Result Exploration 26
1.5.2 Visual Query Manipulation 29
1.5.3 Integrated seamless query-response loop 29

1.6 Evaluation 29
1.6.1 Logging of system parameters 30
1.6.2 Quantitative evaluation parameters 31
1.6.3 Data analysis 32

2 INODE-SQL 2.0 In Action 33
2.1 OpenDataDialog 33
2.1.1 NL-to-SQL: Translating Natural Language Questions to SQL 33
2.1.1.1 Querying CORDIS in NL with ValueNet 33

2.1.1.2 Querying SDSS in NL with SODA 35

2.1.2 SQL-to-NL: Explaining SQL Queries Using Natural Language 37
2.1.3 Recommending Queries (PyExplore) 39
2.1.4 Pipeline Operators 41

Page 4 of 85

I n@D E D3.2 — Second Component Release

2.1.5 Summary 45

2.2 OpenDatalinking 45
2.2.1 Triple Refinement 45

2.3 Integration of OpenDatalinking with OpenDataDialog 48
3 INODE-SPARQL 1.0 In Action 57
3.1 OpenDataDialog 57
3.1.2 NL-to-SPARQL: Translating Natural Language Questions to SPARQL 57
3.1.2.1 Querying CORDIS in NL with Bio-SODA 57

3.1.2.2 Reasoning over the CORDIS Ontology 58

3.1.2.3 Querying SDSS in NL with Bio-SODA 58

3.1.2.4 Reasoning over the SDSS Ontology 60

3.1.3 Enabling SPARQL Queries over OncoMX 61
3.1.3.1 Enriching OncoMX with Ontologies using Ontop 61

3.1.3.2 Reasoning over the OncoMX Ontology 62

3.1.3.3 Querying OncoMX with SPARQL 64

3.2 OpenDatalinking 65
3.2.1 Mapping from Relational Schema to Ontology via Ontop 65

4 API Specification 69
4.1 OpenDataDialog 69
4.1.1 NL-to-SQL and SQL-to-NL 69
4.1.2 Multi-Table Explorer 69
4.1.3 Pipeline Operators 69
4.1.3.3 by-recommendation operator (PyExplore) 71

4.1.4 Integrated Query Processing 74

4.2 OpenDatalinking 76

4.2.1 OpenDatalinking Triple Extraction from NL-text Endpoint (REST-endpoint) 76

4.2.2 MPBoot API 76

4.3 Logging Services 77

5 Data Models 80
5.1 Research & Innovation Policy Making (CORDIS) 80

5.2 Astrophysics (SDSS) 81

5.3 Cancer Research (OncoMX) 82

Page 5 of 85

I n@D E D3.2 — Second Component Release

1 THE INODE SYSTEM

Our new version of INODE system has expanded in three directions:

1. System components: Existing components have been enhanced and new
components have been added. For example, for enabling natural language queries,
we offer different text-to-SQL systems.

2. Sources: INODE enables natural language querying over sources that allow for SQL or
SPARQL queries: INODE-SQL 2.0 and INODE-SPARQL 1.0. More precisely, INODE-SQL
2.0 is the evolved version of what was offered in INODE 1.0, i.e. at project month 10,
while INODE-SPARQL 1.0 is the new service for SPARQL-based data sources.

3. Use cases: Two of our three use cases are fully supported by all services. The third
and most complex use case is supported by parts of the services without full
integration of natural language capabilities.

Table 1.1 summarizes the progress in INODE. It shows which new components are added and
which are upgraded. It provides a summary of the main features and pointers to the
respective sections that provide more details.

System (Work Package) Summary of Features Section

Integrated Query Processing =3

Services (WP3)

Query Execution (Task 3.1) ® Better support for both SQL and 1.1.1
SPARQL data types.

® Support of geospatial data sources
and of the GeoSPARQL query

language.

Source Federation (Task 3.2) e Support of different SQL federation 1.1.2
engines for integrating multiple data
sources.

Data Analytics (Task 3.3) e Support of SPARQL aggregate 1.1.3

functions for data analytics.

Answer Justification (Task 3.4) ® A prototype (not yet integrated in 1.1.4
the main development branch of
Ontop) relying on ProvSQL, a tool for
provenance developed in the
context of RDBMSs.

Page 6 of 85

INGDE

D3.2 — Second Component Release

Data Linking and Modelling (WP4)

1.2

Mapping Construction (Tasks 4.1
and 4.2)

MPBoot:

¢ Improvements in the automated
generation of ontologies from data
sources.

¢ Ability to encode in the ontology
schema additional information
available in the data source, such as
taxonomic relationships.

¢ Ability to exploit a given SQL query
workload to derive semantic
connections between classes and
generate object properties.

121

Knowledge Base Construction (Task
4.3)

UPDATE

Information Extraction: -

¢ Improvements in the process of
extracting triples from NL text (open
information extraction) for both
engines and linking them to specific
ontologies (entity linking).

¢ Implementation of a unified
extraction approach to efficiently
consolidate the extracted triples
from both engines.

e Support for SQL queries targeting
the distilled knowledge from
information extraction processes.

1.2.2

Data Access & Exploration (WP5)

1.3

By Natural Language (Task 5.3)

ValueNet:

Natural language to SQL with a neural
network-based transformer
architecture approach.

Bio-SODA:

Natural language to SPARQL with a
graph-based approach.

131

Page 7 of 85

I nEDD E D3.2 — Second Component Release

UPDATE

SODA:
Natural language to SQL (Adaptations
for the SDSS dataset).

By Example, By analytics (Tasks 5.1) BT 132
and 5.2) By-neighbors.

This operator searches the
neighborhood of a set of items and
returns close sets.

By-distribution. NEW

This operator searches the whole data
space for sets whose value distributions
are the same as the input set.

User Assistance (WP6) 1.4

Explanations (Task 6.1) Logos: 1.4.1

e Extended to translate the SQL
queries produced by ValueNet, as
well as the queries generated by the
data exploration operators.

® |mprovements in terms of query
semantics.

® Improvements in terms of
translation accuracy.

Recommendations (Task 6.2 1.4.2
() PyExplore A8

® Recommends interesting queries for
the user by leveraging data
correlations and diversity.

e Handles datasets with mixed
numeric and categorical attributes.

® The recommended queries have an
augmented WHERE-clause if there
was a WHERE-clause in the initial
query, or a new WHERE-clause if
there was no WHERE-clause.

Multi-Modal Discovery (WP7) 1.5
Visual Result Exploration (Task 7.1) | Visual exploration improved by 1.5.1

increasing information density and
providing a better overview over
multiple search results.

Page 8 of 85

INGDE

D3.2 — Second Component Release

Visual Query Manipulation (Task Interactions have been extended to 1.5.2
7.2) reflect the arguments needed by the
available exploration operators.
Integrated seamless query-response | Improved user experience and Ul 1.5.3
loop (Task 7.3) performance.
Consolidated the code base
(consolidation and streamlining of
multi-table-explorer user experience) in
preparation for OpenDataDialog 3.0.
Evaluation (WP8) 1.6

Logging

A new logging mechanism to record
specific system information is designed
and put into place, in order to perform
evaluation of the INODE system.

Table 1.1: Summary of developments.

SERVICES INODE-SQL 2.0 INODE-SPARAQL 1.0
Integrated Query Processing Ontop
(WP3)
Data Linking and Modelling
(WP4)
MPBoot
Mapping Construction
Triple Extraction from NL-text
Knowledge Base Construction
Data Access & Exploration
(WP5)
- by NL SODA, ValueNet BioSODA
- by-example, by-analytics | Pipeline Operators: added one
new instance of by-example
(by-neighbors) and one new
instance of by-analytics
(by-distribution)

Page 9 of 85

I n@D E D3.2 — Second Component Release

User Assistance (WP6)

- Explanations Logos

- Recommendations PyExplore

Multi-Modal Discovery (WP7) | Multi-Table Explorer

Evaluation (WP8) Logging

Use Cases CORDIS, SDSS, OncoMX CORDIS, SDSS,
OncoMX

Table 1.2: Summary of the INODE services provided by each work package that are part of
INODE-SQL 2.0 (SQL-based) and INODE-SPARQL 1.0 (SPARQL-based).

An overview of the INODE system architecture with the major services is given in Figure 1.1.
The main interface for users to interact with the INODE-SQL 2.0 part of the system in the
present release is the OpenDataDialog 2.0 web application. This application acts as the
integration layer for the services that are colored green in Figure 1.1.

[INODE-SQL 2.0 | \ INODE-SPARQL 1.0 \

Data Access & Exploration1 User Assistance Y Multi-Modal Discovery h Gata Linking and Modelin?

Recommendations

ValueNet

SODA By Natural
Language

Data-driven
Mapping

Visual Result
Exploration

BioSODA

iy
s
T
=

S

Visunl Query

= Manipulation

Task-driven

] By Example Explanations Mapping
£S

T E

£' S\ J Knowledge Graph

& .
. Generation
By Analytics Triple
Y __Extraction

Integrated Query Processing CLuel

LIRS Query Execution Data Analytics GO
Federation Y Y Justification

|

@

Figure 1.1: Services of INODE system architecture. The services shown in green refer to
“OpenDataDialog”, the services in orange to “OpenDatalinking” and the services in blue as

Ontologies +

Mappings

Source
Metadata

Page 10 of 85

I n@D E D3.2 — Second Component Release

“Backend Services”. INODE-SQL 2.0 is the user-facing service that allows access over SQL data
sources and INODE-SPARQL 1.0 also access over RDF knowledge graphs.

1.1 Integrated Query Processing

Integrated query processing is the core service of OpenDataDialog in INODE-SPARQL 1.0, as it
provides the SPARQL query answering capability used by almost all other components. Such
a service relies on Ontop’, a popular Virtual Knowledge Graph (VKG) system. A VKG is a
virtual representation in the form of a graph of the information coming from multiple,
possibly heterogeneous, data sources. Such representation relies on the RDF
recommendation as the format to represent the data as a graph, and on OWL 2 QL? as the
language to represent ontologies. Both are W3C standards for VKGs. The RDF graph is virtual
in the sense that it does not contain data extracted from the data sources (which are
physically stored somewhere, e.g. in a relational database), but rather each query over the
VKG is translated by Ontop into a query over the original data sources. This is done through
reformulation techniques well studied in the literature, as well as a number of optimizations
performed by Ontop itself, so as to reduce to a minimum the overhead introduced by
virtualization and translation. The link between the VKG and the data sources is realized
through a domain-specific ontology, providing a vocabulary for SPARQL queries abstracting
from storage details, and through a set of mappings relating elements in the ontology to
queries over the data sources.

Ontop is not a prototype tool, but a complex, well-engineered, and well-established software
artifact that relies on and interacts with several technologies. Most notably, Ontop supports
all major open and commercial RDBMSs (e.g., PostgreSQL, Oracle, DB2, Microsoft SQL Server,
etc.), and it supports all relevant W3C standards (RDF, RDFS, OWL 2 QL, R2RML, SPARQL, and
GeoSPARQL). Ontop can be used in several different ways: as a SPARQL endpoint to query
through HTTP, as an API to enrich other Java applications, or simply as a shell tool.

Progress within INODE. To cope with the challenges brought by INODE, Ontop has been
improved in several aspects. The design of the new Ontop v4 release has been described in
the paper the Virtual Knowledge Graph System Ontop® published at ISWC 2020. Below we
highlight some improvements with respect to the tasks.

1.1.1 Query execution over rich types of data sources

We have redesigned the typing system of Ontop and implemented better support for both
SQL and SPARQL datatypes. Proper handling of datatypes in SPARQL (e.g., xsd:integer,
xsd:string, xsd:time) and in SQL (e.g., INT, VARCHAR, DECIMAL) is crucial in VKG, but it is also
rather challenging. The reason is that SQL is statically typed in the sense that all values in a
given relation column (both in the database and in the result of a query) have the same
datatype. In contrast, SPARQL is dynamically typed: a variable can have values of different

! https://ontop-vkg.org/

2 https://www.w3.org/TR/owl2-profiles/#OWL_2_QL

® Guohui Xiao, Davide Lanti, Roman Kontchakov, Sarah Komla-Ebri, Elem Giizel-Kalayci, Linfang Ding,
Julien Corman, Benjamin Cogrel, Diego Calvanese, and Elena Botoeva. The Virtual Knowledge Graph
System Ontop. In International Semantic Web Conference (ISWC 2020), volume 2, pages 259-277,
2020.

Page 11 of 85

I n@D E D3.2 — Second Component Release

datatypes in different solution mappings. Also, the output datatype of a SPARQL function
depends on the types or language tags of its arguments (e.g., if both arguments of '+’ are
xsd:integer, then so is the output, and if both arguments are xsd:decimal, then so is the
output). In particular, to determine the output datatype of an aggregate function in SPARQL,
one has to look at the datatypes of values in the group, which can vary from one group to
another. In Ontop v4, we have redesigned the typing system, which supports all standard SQL
datatypes of a database, and SPARQL datatypes in queries. Moreover, Ontop is able to
perform type inference in SPARQL normal functions and SPARQL aggregate functions.

We have implemented support of geospatial data sources and of the GeoSPARQL query
language. Supporting geospatial data sources is important in many use cases e.g., oil
exploration?, maritime security®, and LinkedGeoData®. In the past, we have contributed to
the development of a prototype system called Ontop-spatial” as a fork of Ontop, which
supports a limited fragment of GeoSPARQL. However, this fork is not maintained anymore,
and its functionality did not catch up with the latest developments of Ontop. To address this
issue, we have reimplemented GeoSPARQL support in Ontop v4. With respect to the old
implementation, it has significantly improved the compliance with the Open GeoSPARQL
Consortium (OGC) GeoSPARQL standard. All of the geospatial functions defined in
GeoSPARQL are implemented. In particular, it features improved handling of units (such as
degrees and meters) and different spatial reference systems (SRIDs). We have tested it over
PostgreSQL/PostGIS and H2/H2GIS, and it should work with all relational database systems
that are compliant with the OGC Implementation Standard Simple Feature Access.

All the activities described in the paragraphs above comply with the goals of Task 3.1.

1.1.2 Source Federation

We have implemented support of SQL federation engines for integrating multiple data
sources. In Ontop v4, we support popular federation engines, namely Denodo, Dremio, and
Teiid. These engines have different features and licenses, and can be applied in different
scenarios. For each federation engine, we needed to implement specific adaptors, which
include metadata extraction (e.g., table definitions and constraints) and SQL dialect
translators. Moreover, extensive tests were needed to make sure Ontop interacts with these
federation engines correctly and efficiently. Federation is an essential capability that will
bring several benefits to our use cases. For instance, with respect to the CORDIS use case, it
would be interesting to integrate the data in the CORDIS portal with the information from
the European Patent Office (EPO®), allowing questions such as retrieving the number of EU
patent owners who have also played the role of Principal Investigator in an EU project in the
5 years preceding the patent registration. All these activities comply with the goals of Task
3.2.

4 Evgeny Kharlamov, Dag Hovland, Martin G. Skjaeveland, Dimitris Bilidas, Ernesto Jim‘enez- Ruiz, Guohui Xiao, Ahmet Soylu, Davide
Lanti, Martin Rezk, Dmitriy Zheleznyakov, Martin Giese, Hallstein Lie, Yannis loannidis, Yannis Kotidis, Manolis Koubarakis, and Arild
Waaler. Ontology based data access in statoil. Journal of Web Semantics, 44:3-36, 2017.

> Stefan Briggemann, Konstantina Bereta, Guohui Xiao, and Manolis Koubarakis. Ontology-based data access for maritime security. In
Extended Semantic Web Conference (ESWC), 2016.

6 Claus Stadler, Jens Lehmann, Konrad Hoffner, and Séren Auer. Linkedgeodata: A core for a web of spatial open data. Semantic Web
Journal, 3(4):333-354, 2012. http://linkedgeodata.org/.

7 Konstantina Bereta, Guohui Xiao, and Manolis Koubarakis. Ontop-spatial: Ontop of geospatial databases. Journal of Web Semantics, 58, 2019.

8 https://data.epo.org/linked-data/

Page 12 of 85

http://linkedgeodata.org/

I n@D E D3.2 — Second Component Release

1.1.3 Data Analytics

We have implemented support of SPARQL aggregate functions for data analytics.
Aggregate functions are a basic capability provided by essentially any database system, and
typically application scenarios require them. Aggregate functions are needed by essentially
all our scenarios, as they allow basic queries such as to count the number of EU projects a
certain institution has participated in. One important challenge to provide aggregate
functions over VKGs is to treat cardinalities carefully in order to obtain results that are
compliant with the SPARQL semantics (e.g., for SUM and AVG): the SQL queries in a mapping
produce bags (i.e., multisets) of tuples, but their induced RDF graphs contain no duplicates
and thus are sets of triples; however, when a SPARQL query is evaluated, it results in a bag of
solution mappings. To make the evaluation of aggregate functions feasible in practical
scenarios, we had to develop novel and dedicated optimization techniques, involving a
sophisticated treatment of the SQL DISTINCT operator. In Ontop v4, we support all 6 SPARQL
aggregate functions: COUNT, SUM, MIN, MAX, AVG, GROUP_CONCAT, and SAMPLE. All these
activities comply with the goals of Task 3.3.

1.1.4 Answer Justification

We want the users to be able to reconstruct why a specific answer was returned by Ontop.
Such justification is not only in terms of where the data comes from (data provenance), but
also in terms of which ontology axioms and mapping assertions were involved during the
guery reformulation phase (ontology provenance and mapping provenance, respectively). To
support this task, we have implemented a prototype (not yet integrated in the main
development branch of Ontop) relying on ProvSQL®, a tool for provenance developed in the
context of RDBMSs. ProvSQL only supports PostgreSQL, and to the best of our knowledge no
other tool exists for other types of data sources that would be robust enough.

1.2 Data Linking and Modelling

1.2.1 Mapping Construction

We have improved the functionalities of the MPBoot system, which automatically generates
ontologies and mappings from available data sources. The latest MPBoot 2.0 showcased in
INODE-SPARQL 1.0 supports data-driven and task-driven bootstrapping.

In the case of data-driven bootstrapping, MPBoot is now able to produce richer ontologies
and mappings compared to the Direct Mapping approach, supporting domain and range
axioms for data and object properties as well as subclass relations. MPBoot 2.0 also
introduces a semi-automatic approach for ontology generation, allowing the user to specify
the portions of the ontology to be generated automatically depending on their needs.

In the case of task-driven bootstrapping, MPBoot allows the user to drive the bootstrapping
process by specifying a SQL query workload in order to derive semantic connections between
classes and generate object properties accordingly. This can be extremely useful for cases

° https://github.com/PierreSenellart/provsg|

Page 13 of 85

I n@D E D3.2 — Second Component Release

where there is no explicit connection between classes and the expressivity of the SQL
language is the only way to infer such connections.

1.2.2 Knowledge Base Construction

We have introduced a set of improvements in the OpenDatalinking component of
INODE-SQL 2.0 focusing on information extraction from unstructured text.

With regard to the triple extraction process, we have implemented a triple refinement
approach to combine the outputs of the precision-oriented approach of one engine and the
recall-oriented approach of the second engine. This allows for an efficient unification of both
engines’ results, without sacrificing performance. An additional set of fine-tuning parameters
are also added to ensure the seamless integration of the triple refinement system to the
OncoMX data.

We have also increased the synergy among the OpenDatalinking and OpenDataDialog
components. The distilled knowledge from the aforementioned information extraction
processes is used to enrich the existing data models and can now be queried under the
INODE-SQL.2.0 system.

1.3 Data Access & Exploration

1.3.1 By Natural Language

Progress within INODE. For translating natural language questions to SQL or SPARQL, INODE
now supports three services with different capabilities: SODA, ValueNet and BioSODA. SODA
(already integrated from the previous version) and the newly added ValueNet are both
text-to-SQL services - also referred to as NL-to-SQL service. The former enables advanced
keyword queries, while the latter allows for natural language queries. BioSODA is a
text-to-SPARQL service - also referred to as NL-to-SPARQL service.

ValueNet™ is a text-to-SQL system based on neural networks. As an input, ValueNet receives
a question in natural language and a specific database. As an output, ValueNet delivers a fully
fledged SQL query which is then executed against said database and delivers the information
the user asked for. ValueNet uses the power of large, pre-trained language models to
understand a natural language question and synthesizes a SQL query which represents that
guestion most accurately.

In contrary to classical, rule-based text-to-SQL systems such as SODA™, ValueNet contains no
engineered knowledge but learns from large, open source text-to-SQL data corpora like
Spider™. After training ValueNet on a general text-to-SQL corpus we either apply the trained

10 Ursin Brunner and Kurt Stockinger: “ValueNet: A Natural Language-to-SQL System that Learns from
Database Information”, ICDE 2021

1 Blunschi, L., Jossen, C., Kossmann, D., Mori, M., & Stockinger, K. (2012). SODA: Generating SQL for
business users. Proceedings of the VLDB Endowment, 5(10), 932-943.

2 Tao Yu et al., “Spider: A Large-Scale Human-Labeled Dataset for Complex and Cross-Domain
Semantic Parsing and Text-to-SQL Task”, EMNLP 2018

Page 14 of 85

I n@D E D3.2 — Second Component Release

model of ValueNet to our project database (e.g., CORDIS) in a zero shot setting®, or we
fine-tune ValueNet on a low number of training samples prepared for that specific database

(few shot learning).
Question Database Schema

Pre-Processing

Database Content

r -
I
1
I
= : Encoder ¥
8! =
o ! '8
E : D P
3] ecoder ' 8
< : =
= 1@
g! ’ 8
z | [SemQL (SQL Sketch, chosen Column/Tables/Value) J ! @
[}
L I

Post-Processing

[o)

Query-Execution

¥

| |

Figure 1.2: ValueNet high level architecture.

The flow of data in a text-to-SQL scenario is described in Figure 1.2. The user poses a
question in natural language, which is going to be the input for ValueNet, together with the
database (schema and content).

In the first stage, ValueNet will do pre-processing on the question/schema. One important
sub-task here is to look for potential values in the question which are contained in the
database (e.g., “Show me all John Smith in Texas”). These “hints” together with the input
data are then submitted to the second stage.

The second stage is the core of the architecture, a large neural network built as an
encoder-decoder architecture. The encoder is a large, pre-trained language model (based on
transformers like BERT or BART) which aims to understand the natural language question.
The decoder takes the output of the encoder and synthesizes a query step by step using a
recurrent neural network. The output of the decoder is not SQL, but an intermediate,
semantic query language (SemQL), which aims to abstract from some technical details of SQL
(e.g., filters modeled by “WHERE” or “HAVING”, a technical detail never specified by a user).

2 In a zero shot setting, ValueNet has never been trained on the project database before, but just
applies it’s knowledge learned on general open-source datasets.

Page 15 of 85

I n@D E D3.2 — Second Component Release

The post-processing step then translates the intermediate language (SemQL) into SQL. This
translation is, in contrast to the encoder-decoder stage, a deterministic process. SemQL can
get translated not only to SQL, but to any structured query language similar to SQL (e.g.,
SPARQL).

Bio-SODA™ is a question answering system over domain knowledge graphs, in particular
over RDF graph databases. The strength of Bio-SODA is that it uses a generic, graph-based
approach, in order to answer natural language questions. Therefore it s
domain-independent and does not require prior training data in order to be adapted to a
new dataset.

Within INODE, we applied Bio-SODA to the CORDIS and SDSS databases, made available as
virtual knowledge graphs through Ontop (for details see Section 1.1, Integrated Query
Processing). We illustrate the question answering pipeline through the following example -
consider the question: “What are all spec galaxies with right ascension < 130 and declination
> 572”1 The answering pipeline of Bio-SODA is explained below.

First, the main concepts in the questions are identified by a lookup against an inverted index
over the RDF data. In this simple example, Bio-SODA will identify one (unambiguous)
candidate match per concept, namely the entity: “Spec Galaxy”, as well as the properties
“right ascension” and “declination”, shown in Figure 1.3 below. Bio-SODA also detects two
numerical filters to be applied to these properties, based on the comparison operators used
in the question. For now, we support basic numerical operators, such as “>”, “<”, “=", “>=" or

“__n
<=

What are all spec galaxies with right ascension < 130 and declination > 5? ‘

Keyword Query: What are all spec galaxies with right ascension < 130 and declination > 5?
Selected Matches (one example per class-property pair, limited to top 5):

spec galaxies right ascension declination
http://www.semanticweb.org/skyserver/SpecGalaxy http://www.semanticweb.org/skyserver/right_ascension http://www.semanticweb.org/skyserver/declination

spec galaxies

http://www.semanticweb.org/skyserver/SpecGalaxy: Class: uri ("SpecGalaxy"), SPARQL

right ascension

http://www.semanticweb.org/skyserver/right_ascension: DatatypeProperty: uri ("right_ascension"), SPARQL
declination

http://www.semanticweb.org/skyserver/declination: DatatypeProperty: uri ("declination"), SPARQL

5 (numerical filter on property)

http://www.semanticweb.org/skyserver/declination: DatatypeProperty: uri ("declination"), SPARQL

130 (numerical filter on property)

http://www.semanticweb.org/skyserver/right_ascension: DatatypeProperty: uri ("right_ascension"), SPARQL

Figure 1.3: Example question and candidate matches in Bio-SODA.

In the second step, the system computes the minimal connected subgraph that covers all the
candidate matches. In this case, the minimal subgraph contains only the class “SpecGalaxy”
and its directly connected data properties, “right_ascension” and “declination”. In the final
step, Bio-SODA constructs the corresponding SPARQL query based on this subgraph, applying
also the two filters mentioned in the question. The resulting SPARQL query is executed
against the SPARQL endpoint of SDSS and selected results are then presented to the user in
tabular form, as illustrated in Figure 1.4.

14 Ana Claudia Sima, Tarcisio Mendes de Farias, Maria Anisimova, Christophe Dessimoz, Marc Robinson-Rechavi, Erich Zbinden and Kurt

Stockinger, “Bio-SODA - A Question Answering System for Domain Knowledge Graphs”, under review at the Semantic Web Journal

5 “spec galaxy” denotes a galaxy that has spectroscopic data available in SDSS.

Page 16 of 85

INGDE

Keyword: spec galaxies Match: http://www.semanticweb.org/skyserver/SpecGalaxy
Keyword: declination Match: http://www.semanticweb.org/skyserver/declination

Keyword: ascension Match: http://www.semanticweb.org/skyserver/right_ascension

SPARQL query:

D3.2 — Second Component Release

SELECT DISTINCT ?specgalaxy ?specgalaxy_declination ?specgalaxy_right_ascension WHERE {

?specgalaxy <http://www.semanticweb.org/skyserver/declination> ?specgalaxy_declination.

?specgalaxy a <http://www.semanticweb.org/skyserver/SpecGalaxy>.

?specgalaxy <http://www.semanticweb.org/skyserver/right_ascension> ?specgalaxy_right_ascension.

FILTER (?specgalaxy_right_ascension < 130)
FILTER (?specgalaxy_declination > 5)

¥
LIMIT 100

http://www.semanticweb.org/skyserver/specobj/specobjid=469515959745406976

http://www.semanticweb.org/skyserver/specobj/specobjid=8640344025063510016
http://www.semanticweb.org/skyserver/specobj/specobjid=8690898482326949888
http://www.semanticweb.org/skyserver/specobj/specobjid=7425387786285633536
http://www.semanticweb.org/skyserver/specobj/specobjid=8695560417467191296
http://www.semanticweb.org/skyserver/specobj/specobjid=8650501876222283776
http://www.semanticweb.org/skyserver/specobj/specobjid=8652574712550150144

?specgalaxy_declination ?specgalaxy_right_ascension

14.2740340000000003
28.4444729999999986
32.0786220000000029
33.6727890000000016
34.1520119999999991
28.2784429999999993
24.7360210000000009

8.34072899999999962
12.2750170000000001
12.7790130000000008
15.1399609999999996
18.0093870000000003
21.5287369999999996
23.4612680000000005

http://www.semanticweb.org/skyserver/specobj/specobjid=12463751143212994560 8.98383310000000002 24.2210299999999989

Figure 1.4: Example SPARQL query and selected results.

It is important to note that the properties “right_ascension” and “declination” used in the
RDF graph, close to the terms used in the NL query, occur under different (and less explicit)
names in the original SDSS database (“ra” and “dec”, respectively). The mapping between the
names used in the RDF graph and the attribute names in the source database is provided by
the OpenDatalinking service of INODE.

1.3.2 Pipeline Operators

We are given a relational database that we represent as a set of records. A new set of records
could be obtained by joining multiple tables using different exploration operators. The
exploration operators we formulated in our pipeline are instances of by-example. In its
general form, by-example takes an example set D of items and returns one or several sets
D' of items that are related to items in D by some interpretation. We here recall the
interpretations and equivalent SQL queries for operators: by-superset, and
by-facet, andby-overlap.

Exploration operator by-superset. This operator takes a set D of items and a set A of
attributes and returns the smallest superset of D that preserves the values of attributes in 4.
The corresponding SQL is: SELECT FROM D WHERE P,

The algorithm for implementation of by—-superset can be summarized as: receive input
D (a set of items), and A4 (a set of attributes). Then, put in D' the most overlapping set with
D. And then, take the next set and put it in S. As long as the time limit is not exceeded and
the overlapping threshold is not crossed, browse sets S, and each time replace D' by S, if the
following conditions are satisfied: S is smaller than D', then input set D is included in S and
values of attributes in A4 are preserved.

Exploration operator by-facet. The operator by-facet(D, A) takes a set D of items
and a set 4 of attributes and returns as many subsets of D as there are combinations of

Page 17 of 85

I n@D E D3.2 — Second Component Release

values of the attributes in A. This is akin to faceted search where £ is dictated by the number
of combinations of values of the attributes in 4.

The SQL expression for by-facet is: SELECT * FROM D GROUPBY 4

The algorithm for implementation of the by—-facet operator can be summarized as: split
the input set to several subsets by taking input D (a set of items), 4 (a set of attributes), and
k (the number of result subsets, returned in D'). by-facet is equivalent to the SQL
operator group by. So we use a group by, then we take the & largest sets.

Exploration operator by-overlap. This operator takes a set D of items and returns k sets
of items in D such that each set Dl,, i =1...k overlaps the least with D and overlap

between those sets is minimized.

The operator by—-overlap is a composition of by-superset and by-subset. In SQL,
it takes a set D of items to which is associated a conjunction P of predicates, and finds an
overlapping set D' of items that contains some items satisfying P' obtained by dropping one
conjunct in P and some items satisfying P" obtained by modifying P (either by dropping
conjuncts and keeping at least one conjunct per attribute, or by adding a new conjunct).

The SQL expression is as follows:
SELECT * FROM D, d WHERE P'(d)
SELECT * FROM D", d WHERE P"(d)

The by-overlap operator is implemented with a greedy algorithm. The algorithm for
implementation of the by—-overlap operator can be summarized as: receive input D (an
input set of items), £ (the number of overlapping sets we must return), tlimit (a time limit
and p (a threshold that represents the maximum overlap between a result set and D). First,
we use the index to putin D' the & sets that overlap the least with D. Then, we take the next
set s, and as long as the time limit is not exceeded, and the overlap threshold is not crossed,
we update D', if s satisfies | overlap(D"\s") + s | <| overlap(D") |

The operators: by-superset, by-facet, and by-overlap are integrated in
INODE-SQL 2.0.

Considerable effort was invested into switching the pipeline operators from an “in-memory”
data back-end with pre-computed list of sets and set indexes, to a more generic and common
SQL back-end. This change allows the use of the pipeline operators with any SQL database,
without any adaptation, making them more generic and versatile.

As part of future work we will improve the implementation of by-overlap to work
without the pre-computed set indexes. Moreover, two more operators allowing similar jumps
through the data-space were developed: by-neighbors and by-distribution.
The semantics of these operators is provided in Section 4.1.3. We provide a screenshot of
their APl documentation and of their application on SDSS.

Operator by-neighbors. The by—-neighbors operator exploits the ordinal attributes,
i.e., the attributes with an intrinsic order (binned numerical values, discrete numerical

Page 18 of 85

I n@D E D3.2 — Second Component Release

values, dates, times). The user provides a list of such attributes and an input set, and the
operator returns the sets whose values for the input attributes are in the neighborhood of
the values in the input set.

This operator allows the user to explore the data adjacent to a given place in space (the input
set), by changing one dimension above and below and keeping the others constant.

Operator by-distribution. The by-distribution operator uses the same
“ordered” attributes as by-neighbors, but instead of looking for neighbors on a given list
of attributes, it takes all the ordered attributes in the input set description, and finds all the
sets having the same difference between each ordered attribute.

This operator allows the user to find other sets showing the same relations between the
attributes as the example. It allows the exploration of remote places of the dataspace while
keeping a similarity to the example.

1.4 User Assistance

1.4.1 Explanations

Progress within INODE. In INODE Release 1.0, Logos was used to translate SQL queries from
SODA and Nalir+ into natural language. Logos is a so-called SQL-to-NL service. In the current
release INODE-SQL 2.0, Logos is extended to translate the SQL queries produced by
ValueNet, as well as to translate the output queries of the data exploration pipelines. At
present, Logos supports natural language explanations for both CORDIS and SDSS databases.

In what follows, we show the improvements of Logos per category, giving examples.

Improvements in terms of query semantics. The current version of Logos includes mainly
grammatical changes. Those changes were made not only for the system to be compatible
with other systems as well (e.g., Nalir+, SODA, etc.), but also to further develop Logos
capabilities of translating SQL queries that are more demanding (in terms of translation).

The newly developed extensions enabled Logos to support the following query types:
| _limi
CORDIS query example (select top):
SELECT TOP 10 * FROM projects WHERE projects.title LIKE

'$Stheseus%’';

Translation: Find everything about projects whose title is like %theseus%. Limit the
results to top 10.

SDSS query example (limit):

SELECT specobjid FROM specobj WHERE class = 'STAR' and
zwarning = 0 LIMIT 100;

Page 19 of 85

I nﬁ)D E D3.2 — Second Component Release

Translation: Find spectroscopic objects whose class is STAR and redshift warning is 0.
Limit the results to top 100.

not like operator

CORDIS query example:
SELECT * FROM projects WHERE ec fund scheme NOT LIKE

'SMSCA-IF-EFS$';

Translation: Find everything about projects whose fund scheme is not like
%MSCA-IF-EF%.

L

CORDIS query example:

SELECT total cost, ec max contribution,

framework program, ec fund scheme

FROM projects WHERE framework program IN ('FP7') AND
ec_fund scheme NOT IN ('ERC-SG', 'CP-SoU');

Translation: Find the total costs, max contributions, framework programs and fund
schemes of projects whose framework program is in {FP7} and fund scheme is not in
{ERC-SG, CP-SoU, MC-IAPP, ERC-CG}.

rojections including " nt(*)"

CORDIS query example:
SELECT COUNT (*) FROM projects WHERE start year = 2012;

Translation: Find the cardinality of projects whose start year is 2012.

Improvements in terms of translation. Another important addition to our latest release is
the annotated database graph (see Section 5). This feature enables the generation of more
natural, human-like translations.

CORDIS query example:
SELECT p.full name FROM people p, projects pr
WHERE pr.principal investigator = p.unics id;
Logos v.1: Find the full names of people associated with projects.
Logos v.2: Find people that are principal investigators of projects.
SDSS query example:
SELECT n.* FROM neighbors n, photoobj p
WHERE p.objid = n.objid AND p.b = 1.072 AND p.1l =
174.535;

Logos v.1: Find everything about neighbors associated with photoobj
whose b is 1.072 and | is 174.535.

Page 20 of 85

I n@D E D3.2 — Second Component Release

Logos v.2: Find everything about nearest neighbors of photometric
objects whose galactic latitude is 1.072 and galactic longitude is 174.535.

Moreover, specific attributes from relations have been chosen to serve as representatives of
their corresponding relations. We call these attributes heading attributes and when
appearing in the SELECT-part of a query, the way of producing the natural language
explanation changes, giving a more natural result.

CORDIS query example:
SELECT title FROM projects WHERE start year > 2018;

Logos v.1: Find the titles of projects whose start year is
greater than 2018.

Logos v.2: Find projects whose start year is greater than 2018.

SDSS query example:
SELECT specobjid FROM specobij;

Logos v.1: Find the specobijids of specob;.
Logos v.2: Find spectroscopic objects.

Working with the CORDIS database, we noticed that some relations were used only to
connect other relations (bridge tables), storing indices. Manually reported, those relations
are excluded from the translation procedure.

CORDIS query example:

SELECT pr.title FROM projects pr, project subject areas
psa, subject areas sa

WHERE pr.unics id = psa.project AND psa.subject area =
sa.code AND sa.title = 'Robotics';

Logos v.1: Find the title of projects, for projects associated with project
subject areas, and for project subject areas associated with subject areas
whose title is robotics.

Logos v.2: Find projects on subject areas whose title is robotics.

1.4.2 Recommendations

Generating query recommendations in INODE-SQL 2.0 leverages the query capabilities of
PyExplore. PyExplore™ is a data exploration tool aimed at helping end users formulate
queries over new datasets. PyExplore takes as input an initial query from the user along with
some parameters and provides interesting queries by leveraging data correlations and
diversity. It is able to handle datasets with mixed numeric and categorical attributes.

% A. Glenis, G. Koutrika. PyExplore: Query Recommendations for Data Exploration without Query Logs.
ACM SIGMOD, 2021

Page 21 of 85

I n@D E D3.2 — Second Component Release

As input to PyExplore, we consider a query of the form:

SELECT A FROM T WHERE P

where T is a set of tables joined for the query, A is a subset of the table attributes projected
in the query result, and P is a conjunction of selection predicates.

PyExplore then produces a set of ranked queries with an augmented WHERE-clause if there
was a WHERE-clause in the initial query or a new WHERE-clause if there was no
WHERE-clause.

The first step of the recommendation process is to find ‘interesting’ subsets of query
attributes. PyExplore leverages two notions: attribute correlation and diversity.

e Correlation-based. Correlation is the measure of how two features are correlated. For
example, the month-of-the-year is correlated with the average daily temperature, and
the hour-of-the-day is correlated with the amount of light outdoors. Data scientists are
interested in correlated attributes to highlight relationships between attributes of the
data set.

First, PyExplore computes the correlation of each pair of attributes in the query results.
One challenge is how to deal with different types of attributes. For comparison between
numerical attributes, it uses Pearson correlation”, for categorical-categorical, it uses
Cramér's V 8, and for categorical-numerical, it uses Correlation Ratio™. To make all
correlation metrics in the same range, i.e., [0, 1], we take the absolute value of the
Pearson Correlation. Then, the inverse of the absolute value of the correlation matrix is
used as a distance matrix, which is given as input to a clustering algorithm that creates
clusters of correlated attributes.

PyExplore uses two options for clustering correlated attributes: (a) hierarchical
clustering®® with complete linkage takes as input the maximum number size_max of
attributes per cluster and decides the number of clusters accordingly, and (b) OPTICS%,
which is a density-based algorithm that decides how many clusters to create and also
clusters all outliers together. This cluster with outliers is ignored by the recommendation
algorithm.

e Diversity-based: Intuitively, an attribute that has a diverse set of values is interesting
because it allows the user to explore a larger part of the initial query results compared
to a less diverse attribute. To compute diversity for numerical columns, PyExplore uses
the normalized Shannon entropy. For categorical columns, it computes the ratio
between the unique values in the column and the total rows in the column. Then,
subsets of diverse attributes up to a size_max size are generated in a greedy manner.

Note that both correlation and diversity are computed on-the-fly on the results of the initial
user query.

7 https://en.wikipedia.org/wiki/Pearson_correlation_coefficient

'8 https://en.wikipedia.org/wiki/Cram%C3%A9r%27s_V

9 https://en.wikipedia.org/wiki/Correlation_ratio

0 https://en.wikipedia.org/wiki/Hierarchical_clustering

2L Ankerst, Mihael et al,OPTICS: Ordering points to identify the clustering structure

Page 22 of 85

I n@D E D3.2 — Second Component Release

The query recommendation process generates the queries using clustering to find interesting
subsets of the data, and then feeds the results of the clustering into a decision tree classifier
to obtain the rules for producing the queries.

Result Clustering. For each subset of attributes identified by the first step, PyExplore clusters
the initial query results using the values of the attributes in the subset. It uses two options.

The first is K-means with scaling and encoding categorical values as dummy variables.

However, encoding categorical values as dummy variables can lead to increased time and
space complexity for data sets with high-cardinality categorical values. To overcome this
problem, PyExplore uses K-modes. Specifically, to enable the clustering of categorical data
in a fashion similar to k-means, the algorithm proposed by Huang (1997)* uses a simple
matching dissimilarity measure, replaces the means of clusters with modes, and uses a
frequency-based method to update modes in the clustering process to minimise the
clustering cost function. The algorithm proposed by Huang (1998)*, through the definition of
a combined dissimilarity measure, further integrates the k-means and the algorithm
presented by Huang (1997) to allow for clustering objects described by mixed numeric and
categorical attributes.

Query Generation: For each subset, the resulting cluster labels are fed into a decision tree
classifier to produce the split points of the data. The resulting split points are used to create
the recommended SQL queries.

More concretely, PyExplore traverses the decision tree from the leaves up to the root, and
for each path from the starting leaf to the root, it generates an output query. The conditions
of the WHERE clause of each query describe the cluster boundaries as they are described by
each path in the decision tree. Since PyExplore uses clustering to obtain partitions of the
data space, it leverages clustering quality metrics to obtain a ranking of the produced
recommended queries. Specifically, it uses density as a quality metric for clustering. Higher
density score is better, meaning that the respective query describes a very dense area of the
data.

The following example shows the recommendations of the running query on the CORDIS
dataset (see Figure 1.5):

CORDIS query example:
SELECT total cost, ec max contribution,
framework program, ec fund scheme FROM projects;

Recommendations:

Here we see that framework programe and ec_fund_scheme are correlated and
form a view. We see that the recommended queries propose values for funding
schema that make sense such as “FP7” and “H2020".

22 Zhexue Huang. Clustering large data sets with mixed numeric and categorical values. In Proceedings
of the 1st Pacific-Asia Conference on Knowledge Discovery and Data Mining. 1997. DOI:
10.1.1.94.9984.

2 Zhexue Huang. Extensions to the k-means algorithm for clustering large data sets with categorical
values. Data Mining and Knowledge Discovery 2(3): 283-304. 1998.

Page 23 of 85

INGDE

View

['ec_max_contribution']

['framework_program'
'ec_fund_scheme']

Query

SELECT
total_cost,ec_max_contribution,framework_program,ec_fund_scheme
FROM projects where ‘ec_max_contribution” < 34022656.0

SELECT
total_cost,ec_max_contribution,framework_program,ec_fund_scheme
FROM projects where ‘ec_max_contribution’ < 137245424.0 and
‘ac_max_contribution’ >= 34022656.0

SELECT
total_cost,ec_max_contribution,framework_program,ec_fund_scheme
FROM projects where ‘ec_max_contribution’ >= 137245424.0

SELECT
total_cost,ec_max_contribution,framework_program,ec_fund_scheme
FROM projects where ‘framework_program’ in ('H2020', 'IC', 'CIP')
and ‘ec_fund_scheme' in (PB', 'ERC-SyG', 'MSCA-IF-EF-RI', 'ERC-
POC-LS', 'COFUND-PPI', 'CSA', 'CIP-EIP-EI-PMRP', 'ERC-POC',
'MSCA-IF-EF-CAR', 'MSCA-ITN-EJD', 'Shift2Rail-RIA-LS', 'PA', '0.0',
'CS2-I1A', 'shift2Rail-IA-LS', 'BBI-CSA', 'IMI2-RIA', 'BBI-IA-FLAG',
'SESAR-RIA', 'CS2-CSA', 'ERA-NET-Cofund’, 'IMI2-CSA', 'FCH2-
CSA', 'BBI-IA-DEMO', 'lA-LS', 'SME-1', 'CSA-LS', 'ERC-COG",
'FCH2-1A', 'RIA-LS', 'H2020-EEN-SGA', '"MSCA-|F-EF-SE', 'ECSEL-
IA', 'MSCA-RISE', 'ECSEL-CSA', 'BBI-RIA", 'FCH2-RIA', 'MSCA-
COFUND-DP', 'Shift2Rail-CSA', 'BPN', 'MSCA-IF-EF-ST', 'SME-2',
'CS2-RIA', 'SGA-RIA", 'COFUND-EJP', 'TN', 'ERC-ADG', 'COFUND-
PCP', 'ERC-LVG', 'SGA-CSA', 'ECSEL-RIA', 'RIA", 'Shift2Rail-IA',
'Shift2Rail-RIA', 'ERC-STG', 'MSCA-ITN-EID', 'SESAR-IA", 'MSCA-
ITN-ETN', 'PPI', 'PCP', 'SESAR-CSA', 'MSCA-COFUND-FP', 'IA",
'MSCA-IF-GF")

SELECT
total_cost,ec_max_contribution,framework_program,ec_fund_scheme
FROM projects where ‘framework_program’ in ('FP7') and
‘ec_fund_scheme’ in ('PB', 'ERC-SyG', 'MSCA-IF-EF-RI', 'ERC-POC-
LS', 'COFUND-PPI', 'CSA', 'CIP-EIP-EI-PMRP', 'ERC-POC', 'MSCA-
IF-EF-CAR', 'MSCA-ITN-EJD", 'Shift2Rail-RIA-LS', 'PA', '0.0', 'CS2-
IA', 'Shift2Rall-IA-LS', 'BBI-CSA', 'IMI2-RIA, 'BBI-IA-FLAG', 'SESAR-
RIA', 'CS2-CSA', 'ERA-NET-Cofund', 'IMI2-CSA', 'FCH2-CSA', 'BBI-
|A-DEMO", 'lA-LS', 'SME-1', 'CSA-LS', 'ERC-COG!, 'FCH2-IA", 'RIA-
LS', 'H2020-EEN-SGA', 'MSCA-IF-EF-SE', 'ECSEL-IA', 'MSCA-RISE',
'ECSEL-CSA', 'BBI-RIA", 'FCH2-RIA", 'MSCA-COFUND-DP",
'Shift2Rail-CSA', 'BPN', 'MSCA-IF-EF-ST', 'SME-2', 'CS2-RIA,
'SGA-RIA', 'COFUND-EJP', 'TN', 'ERC-ADG', 'COFUND-PCP", 'ERC-
LVG', 'SGA-CSA', 'ECSEL-RIA', 'RIA', 'Shift2Rail-IA", 'Shift2Rail-RIA',
'ERC-STG', 'MSCA-ITN-EID', 'SESAR-IA', 'MSCA-ITN-ETN', 'PPI',
'PCP', 'SESAR-CSA', 'MSCA-COFUND-FP', 'IA!, 'MSCA-IF-GF')

SELECT
total_cost,ec_max_contribution,framework_program,ec_fund_scheme
FROM projects where ‘ec_fund_scheme’ in ('CP-FP', 'MC-IAPP’, 'CP-
FP-SICA', 'JTI-CP-IMI', 'JTI-CP-ENIAC', 'CP-SICA', 'MC-IIF', 'CP-
CSA-Infra', 'MC-CIG', 'CP-IP-SICA'", 'CP-CSA', 'CP-SoU', 'BSG-
SME', 'CPCSA, 'CP-CSA-Infra-PP', 'MC-ERG", 'MC-COFUND', 'CP-
IP', JTI-CS', 'BSG-SME-AG', 'JTI-CP-ARTEMIS', 'JTI-CP-FCH',
'MC-IEF', 'NoE', 'ERC-CG'", 'MC-ITN', 'CSA-ERA-Plus', 'CP-TP',
'CSA-ERANET', 'MC-IIFR', 'CSA-SA(POC)', 'MC-IOF', 'CSA-SA',
'BSG-CSO', 'MC-IRSES', 'CSA-CA', 'ERC-SG', 'JTI-CSA-FCH', 'MC-
IRG!)

SELECT
total_cost,ec_max_contribution,framework_program,ec_fund_scheme
FROM projects where ‘ec_fund_scheme’ in ('CP', 'ERC-AG')

D3.2 — Second Component Release

Scores

0.5990866422653198

0.4657362103462219

Figure 1.5: Recommendations for a CORDIS query.

The following screen shows the recommendations of the query on the SDSS dataset (see

Figure 1.6):

SDSS query example:

SELECT objid,ra,dec FROM photoobj LIMIT 10000;

Page 24 of 85

I n@D E D3.2 — Second Component Release

View Query Scores

['dec'] . X 0.9990967512130737
SELECT obijid,ra,dec FROM photoobj where dec >= 33.46176

SELECT objid,ra,dec FROM photoobj where dec < 30.594868

SELECT objid,ra,dec FROM photoobj where dec >= 30.594868 and dec <
33.46176

objid" 1
[ra']] SELECT objid,ra,dec FROM photoobj where ra < 150.3222

SELECT objid,ra,dec FROM photoobj where ra >= 150.3222 and ra < 183.21983

SELECT objid,ra,dec FROM photoobj where ra < 234.83829 and ra >=
183.21983

SELECT objid,ra,dec FROM photoobj where ra >= 234.83829

Figure 1.6: Recommendations for an SDSS query.

As we can see objid and ra are correlated and form a view. We can also see that the
recommendation system choses some interesting values as split points for ra and dec.

1.5 Multi-Modal Discovery

The goal of the Multi-Modal Discovery layer is to implement means for result exploration and
follow-up operator execution. In doing so, it seeks to help users understand the options they
have for finding the data they need through visual exploration of results at each exploration
step and interactive manipulation and optimization of exploration operators.

Visual exploration of intermediate results aims at enabling users to visually manage the
actual content. When necessary, users can revise their exploration steps through interactive
manipulation and optimization of exploration operators.

Progress within INODE. Work on visual guidance and exploration of search results as well as
interactive manipulation and optimization of queries has been continued and work to
accommodate for the integration requirements has already been started. In summary, many
minor changes have been implemented since the INODE 1.0 release, consolidating and
streamlining the Multi-Table Explorer user experience as well as the code base in preparation
for OpenDataDialog 3.0. Noteworthy changes to the previous release (described in D3.1) are
described below.

1.5.1 Visual Result Exploration

Relevance-based column ordering. The SDSS data set often results in tables with 500
different columns, which, for example, represent various measurements and parameters
recorded during sky observations. To ease overview and navigation, columns are now
ordered by relevance, putting the important columns to the left of the Multi-Table Explorer

Page 25 of 85

I n@D E D3.2 — Second Component Release

view while less relevant columns are sorted to the right. This should, on average, reduce the
need to scroll horizontally. In this release, the relevance of columns is increased based on
interviews with the use case providers, only. However, the system is already prepared to
apply more complex relevance measures in a future release, for example to integrate the
correlation-based or diversity-based measures described in Section 1.4.2 Recommendations.
Ongoing (non-integrated) work for arranging and structuring search results will be presented
in Deliverable D3.3.

Improved information density. To maximize the information conveyed to the user, the
resolution of histograms has been increased, data type meta information is available as a
tool tip, axis labels have been added, and popup menus have been redesigned to save space.
A comparison of the previous and the current release is given in Figure 1.7.

+ project_topics.project project_topics.topic projects.title projects.end_year projects.total_cost
FP7-PEOPLE-201... 442 Action "Esta... 3
FP7-PEOPLE-200.. 337 Make Rail Th, 2
FP7-PEOPLE-201... 130 ImProvemen... 2
FP7-PEOPLE-201... 110 Enhancing in... 2 _—
Others 2692 Others 3702

soda: Find everything about projects whose start year is greater than 2018 and everything about project panels of these projects.

1 s0rows projects, project_erc_panels
++ 19 columns

projects.ec_ref (INT.. # projects.start_year (I.. # projects.total_cost (

DOUBLE (Unary distribution)

<760000.0 2810000.0 <2079.1 =20 295 elements
Value of DOUBLE
soda: Find everything about projects whose start year is greater than 2018 and everything about project subje jn 1 category.

tamwe i 4 mithinad Arann meaian tn

Figure 1.7: Comparing the upper to the lower image, a higher data-ink-ratio as well as less
wasted screen real estate can be observed, while columns are still distinguishable from each
other.

Table overview information. We now include meta information provided by our partner
services into the Multi-Table Explorer view, for example, the width and height of the table,
but also the natural language explanation as well as its accompanying SQL statement. Also,
we added pagination to enable the user to view excerpts of interesting tables.

Page 26 of 85

INGDE

ﬂ Projects title

Projects ec call

Projects ec ref

D3.2 — Second Component Release

Projects start year

Projects total cost

1 50rows

=+ 19 columns

projects, project_erc_panels

soda: Find everything about projects whose start year is greater than 2018 and everything about project panels of these projects

A projects.title (STRIN
M

QIO

1
1
1
1
1

ts

A
RO
E

E

E

E

ec_call (ST

projects.ec_ref (INT

projects.start_year (

projects.total_cost (

. < 760000.0 2 810000.0 <2019.1 22019.9 <900000.0 =z 340000C
Row 0 Curiosity and the Development « ERC-2017-ADG 787981 2019 2500000
Row 1 European Ars Nova: Multilingua ERC-2017-ADG 786379 2019 2193375
Row 2 Breaking and rebuilding the gen ERC-2018-STG 802525 2019 1499075
Row 3 Nineteenth-Century Sociograph ERC-2018-STG 802582 2020 1477125
Row 4 Generating artificial touch: from ERC-2017-COG 772242 2019 1223638.75
Rows per page 5w 1-5 of 50 > >l

Figure 1.8: (A) provides relevant meta information about a result, such as its NL
representation, width and height of the fetched result, and other information. (B) shows
overview information about various columns. The user can toggle the display of (C) to browse
through the actual table rows on demand.

Support for more data types. Besides numerical (integer, double) and categorical (string)
data types, the Multi-Table Explorer now supports image URLs as a separate data type (as
needed for the SDSS dataset, see Figure 1.9). On the one hand, it serves as a validation that
new data types can be added and, on the other hand, is an intermediate step to integrate the
galaxy explorer app prototype which demoes by-distribution and by-neighbors
operators.

? image_url (URL) A galspecline.specabji # g
L)) R 1 o
2 9 1

Urls interpreted as images -
http://skyserver 8.7t
http://skyserver
http://skyserver 05C
http://skyserver 73t
http:#/ 23¢

IIIII gi

Figure 1.9: URL columns show a small preview of a random set which fits the size constraints
for columns (top left of the image), but also shows a large tooltip with more and larger
previews if the user hovers over it.

Page 27 of 85

I n@D E D3.2 — Second Component Release

1.5.2 Visual Query Manipulation

As new services for exploring and interacting with the data have been added, we extended
the table explorer to trigger these actions. This includes the ability to explore by
recommendations (see Figure 1.10 (left)) and to refine a natural language query based on a
selected table result (see Figure 1.10 (middle)). Some advanced techniques, for example,
explore-by-neighbors, support only specific data types, but implementation of those
constraints has been postponed after M18.

v A projectstitle (STRIN 1 Give Feedback *
oaches to the

Novel

By Natural Language

The
The Is this a good result?
= Refine the natural language query of the selected result

h

Yes

Explore by superset bout proje

Explore by recommendation

Explore by natural language

Give feedback

Figure 1.10: (left) new operators ‘ Explore by recommendation’, ‘Explore by natural
language’ and an ‘Give feedback’ action have been integrated. (center) If a user clicks
‘Explore by natural language’, they can adapt the natural language query to suit their needs
in a modal. (right) Also, users can provide relevant feedback if a search result suits their
needs or not.

1.5.3 Integrated seamless query-response loop

Originally, Task 7.3 was scheduled to begin by M13, but we started earlier to enable
integration of our partners’ operators where they semantically fit into the application. Most
of the work has already been shipped in OpenDataDialog 1.0. However, performance
improvements have been integrated as part of this task. As users expect to have a fluent
experience when surfing the web, we took measures to reduce the time to first contentful
paint on the front end. One issue was that rendering hundreds of histograms, tables and
other information introduced performance issues on mid-range and low-end computers. We
reduced this by limiting the initial view to the most important columns first. The users are
still able to select whatever they are interested in, or even display all information available.
This improvement does not mitigate server-client related loading times but increases the
snappiness of the application.

1.6 Evaluation

In order to implement the evaluation of the INODE system (WP8), it is necessary to design a
logging mechanism first, so that we can record various system-generated events. In this
version of the INODE system, we developed a logging mechanism that records various system
parameters. Therefore for WP8, we completed Deliverable 8.1 (defining quantitative
measures for our system), Deliverable 8.2 (evaluation report on the quantitative measures
for our systems), and outline plans for Deliverable 8.3 (design of study for qualitative
evaluation part).

Page 28 of 85

I n@D E D3.2 — Second Component Release

As the main goal is system evaluation, we present our work related to:

1. methodology to extract & report the evaluation parameters (covers Deliverable 8.1)

set of quantitative evaluation parameters (covers Deliverable 8.2)

3. methodology to mathematically analyse the extracted evaluation parameter (covers
Deliverable 8.3 - partially).

N

1.6.1 Logging of system parameters

System evaluation requires analysis of various system factors. So as a first step, it is necessary
to come up with a technique to extract and then record these parameters from the INODE
system. We have implemented a dedicated (separate) logging mechanism for recording the
evaluation parameters during each user session. We design our dedicated logging
mechanism with features such as:

e The logging mechanism structure is kept flexible so as to easily deal with the addition
of new evaluation parameters.

e The logging mechanism assigns a user ID to each user session and stores it as a web
cookie, thus ensuring identification of the same users across multiple sessions.

® Logs are JSON objects with predefined log structure, which can be parsed easily using
various python libraries.

e The logging mechanism ensures no delays in recording user events by requesting
time stamps from the frontend.

Log entries are recorded by means of calls to a logging API. The calls to this APl are issued at
the moment from the integration layer, which corresponds mainly to our INODE
OpenDataDialog 2.0 application (the main interface for users to interact with INODE-SQL
2.0). The integration layer also includes a couple of wrapper services, namely the NL-to-SQL,
i.e., SODA and ValueNet, and SQL-to-NL (i.e., Logos) services. These provide a REST API to the
underlying tools. In the case of NL-to-SQL, the Nalir+ and SODA systems are executable Java
applications that communicate via their standard input and output, so a wrapper is required
to give them a REST API. ValueNet already has such an API, but in order to homogenize it
with the API for Nalir+ and SODA developed in the previous release (INODE-SQL 1.0), we
have also assigned its management to the NL-to-SQL service. In this case, the NL-to-SQL
wrapper acts as a proxy, translating a request directed towards the common NL-to-SQL API
into a request directed towards the specific ValueNet API. Similarly, the SQL-to-NL service
provides a REST API to the Logos tool, which is a Java library.

The OpenDataDialog frontend logs user interactions, such as mouse clicks. The backend side
of the application logs the inputs, outputs, and latency of the Recommendations and Pipeline
Operator APIs (both of which are called from the OpenDataDialog’s backend). The two
wrapper services log, similarly, the inputs, outputs, and latency of the NL systems and Logos
tool, respectively.

The architecture of the logging mechanism for INODE is shown in Figure 1.11. The term
“container” in the architecture figure denotes a docker container, since the different
services/components of INODE-SQL 2.0 are deployed as docker containers. The logging APl is
also deployed in its own docker container. This architecture includes the possibility to call the
logging APl from within the Recommender and Pipeline Operators services, so as to record

Page 29 of 85

I nﬁD E D3.2 — Second Component Release

parameters that can only be measured internally, even though these services are not directly
calling the logging APl in the present release.

Container 1
Recommender
System

Container 2

ZHAW server

Container 3

SQL to NL
(Logos)

Container 4

"550e8400-
229b-11d4-a716-446655440000"

Pipeline
Operators

N
}

Container 5
Open Data
Dialog Backend

Browser
Open Data
Dialog Frontend

Figure 1.11: System architecture for logging mechanism for INODE system.

1.6.2 Quantitative evaluation parameters

Once the logging mechanism is in place, the next thing is to record certain system
parameters to produce quantitative measures for system evaluations. Currently we extract
the evaluation parameters shown in Table 1.3 from our logs.

Parameter Description

1 | Session start time Timestamp at which the users start using the session.

Page 30 of 85

https://docs.google.com/document/d/1qbvzB3up2iuWt96ZOKu5azY2xB65cYL7PyWJDPsA2VY/edit?ts=5fcfd03e

I n@D E D3.2 — Second Component Release

2 | Session stop time Timestamp at which the users stop using the session.

3 | Pool of operators Recording the pool of operators that each participant
utilized during the experiment.

4 | Ul objects Recording clicks on a fixed set of objects (only Ul objects),
that the user initiates.

5 | Query Execution start | Time at which the query execution is started (e.g., after NL
time to SQL query translation).

6 | Query Execution end Time at which the query execution is ended (e.g., NL to SQL

time query translation).
7 | Query Execution Time taken for query execution measured at the backend
Latency (e.g., after NL to SQL query translation).

8 | Questionnaire Output | Recording each participant's responses to the
guestionnaire, at the end of the session.

Table 1.3: List of evaluation parameters that are recorded to perform quantitative and
qualitative system evaluation.

1.6.3 Data analysis

Now that the evaluation parameters are available, the next part is to analyze these
parameters extracted for each user by applying statistical methods. This section outlines the
methodology that we will use to evaluate our set of operators by using data from user
feedback and statistical analysis.

For the purpose of user-driven pipeline evaluation, our goal is to understand the effects of
user perceived feelings of Accomplishment, Effort, Mental Demand, Controllability, and
Temporal Demand. Our main motivation is to understand the following:

e What number of interactions (more or less) is better for a user's perceived overall
satisfaction?
e Which set of operators are required to achieve user perceived satisfactory results?

Two factors are considered, namely exploration operators (a set of all operators S vs S’ with
one less operator) and interventions allowed for the user (upper bound: N/2 times vs N
times). Refer to Section 1.3.2 for a definition of exploration operators. All other factors are
kept constant for all experiments, namely dataset, Al algorithm, exploration platform,
dimensions to group on etc. The use case under study is to find various types of galaxies from
the SDSS dataset. At the end of the session, the user feedback is collected from a
guestionnaire designed to record the effects of user perceived feelings of Accomplishment,
Effort, Mental Demand, Controllability, and Temporal Demand. The data from this
guestionnaire will be used to create split plots that will allow us to give insights into which

Page 31 of 85

https://docs.google.com/document/d/1qbvzB3up2iuWt96ZOKu5azY2xB65cYL7PyWJDPsA2VY/edit?ts=5fcfd03e
https://docs.google.com/document/d/1qbvzB3up2iuWt96ZOKu5azY2xB65cYL7PyWJDPsA2VY/edit?ts=5fcfd03e

I n@D E D3.2 — Second Component Release

operators work better for subsetting a given data set, in order for the user to properly
explore and reach the final dataset.

2 INODE-SQL 2.0 In AcTion

2.1 OpenDataDialog

In this section we will demonstrate the services of INODE-SQL 2.0 based on the two datasets
of CORDIS (policy research) and SDSS (astrophysics). We adapt to the typical flow of the web
application: Starting from scratch, the user enters a natural language query which is
interpreted by up to three NL-to-SQL operators. As multiple SQL translations result from this,
the user then assesses the multiple results by investigating the data with the Multi-Table
Explorer, which includes SQL-to-NL translations of the results. Then, the user continues to
explore the data with the help of the by-recommendation operators as well as the new
pipeline operators.

2.1.1 NL-to-SQL: Translating Natural Language Questions to SQL

NL-to-SQL has been enhanced in this release. We first demonstrate ValueNet on the CORDIS
use case and afterwards demonstrate SODA’s capabilities on the astrophysics use case.

2.1.1.1 Querying CORDIS in NL with ValueNet

For this release we apply ValueNet to the CORDIS data. As ValueNet requires a GPU-enabled
infrastructure to run its large neural network, it is hosted outside of INODE-SQL 2.0 in the
ZHAW GPU Cloud. Due to the robust API design of INODE-SQL 2.0, integration of ValueNet as
an outside REST service did not require any additional effort.

ValueNet can now be selected as a new system in the INODE OpenDataDialog 2.0 settings
(see Figure 2.1).

Type your natural language query here E]

Choose one or more systems 1o execute Maximum interpretations per system
Valuenet [Natural Language]
Nalir+ [Natural Language]

Soda [Keyword]

3

Maximum number of results per interpretation

Choose a database 5
©Q cordis

sdss

Figure 2.1: The landing page of INODE-SQL 2.0 shows ValueNet as NL-to-SQL translation
system for the CORDIS database.

We start exploring ValueNet by asking the question “Find projects that started before 2016”.
ValueNet synthesizes the correct SQL “SELECT * FROM projects AS Tl WHERE
Tl.start year < 2016” and the INODE OpenDataDialog displays the data as
expected (see Figure 2.2).

Page 32 of 85

I n@D E D3.2 — Second Component Release

While this question is not especially complex, it still requires a certain knowledge to
synthesize the correct SQL: The word “started” is referring to the column “start year”’,
“before” should get translated to the “<” operator and the simple mentioning of “projects” is
referring to “SELECT *”. All this knowledge is learned by ValueNet from scratch during
training on a publicly available data corpus.

INODE Open Data Dialog 2.0 User ID: 21fed3f8-bada-4abe-a221-67f9f0eb3f01

Find projects that started before 2016 | 2 |[& |
ey Projects title Projects unics id Projects acronym Projects ec call Projects ec fund scheme Projects cordis ref Projects ec ref

valuenet: Find everything about projects whose start year is less than 2016,

1 5rows projects
=17 columns.

~ A projectstitle (STRIN. # projects.unics_id (IN A projects.acronym (S. A projects.ec_call (ST A projects.ec_fund_sc. # projects.cordis_ref (I # projects.ec_ref (IN
Nano-Voids i Strainec S 2 MPACT 7 EPTPEOPLEIONSIEE 0 MeEF 1568
Developmentof Sefubric. 2 SART & FPPEOPLEI0ILIEF 1 op 1039
Qualty and oy 2 HERMES 5 HAZOMSOAIFZ014 w2 cerp o1z
Fast and c o 2 CASCADE S EPTPEOPLEIOOSEF 23 moos 529
Miapping quentiatve tait o > <1500000 22100000 scoee 4 rPrrEOPLELONIIEF 2 osasa S5 <900000 22000000 <200000.0 =9000
Others 9962 otmers 9957 Others 813 omers an

Row0 Engage and Inspire the Europea 153263 Odysseus FP7-SPACE-2011-1 CSA-SA 100885 284442

Row1 Ecological correlates of storage 159434 STORMITURTLE FP7-PEOPLE-2009-IEF MC-EF 97027 252738

Row2 Novel GAsification REactor forc 174109 GAREP H2020-SMEINST-1-2014 SME-1 197171 673311

Row3 Technology Enhanced Learning 154270 TELL ME FP7-CT2011-8 P 106474 318329

Row4 Understanding how plantroottr 157684 FIXSOIL FP7-PEOPLE-2013-EF MC-IEF 188039 626666

Rowsperpage: 5~ 15of5

Figure 2.2: ValueNet interpreting the question “Find projects that started before 2016” on the
CORDIS database.

The next question we ask ValueNet is “Show the name of members in projects costing less
than the average project cost.” (see Figure 2.3) which ValueNet synthesizes correctly into:

SELECT Tl.member name
FROM project members AS T1

JOIN projects AS T2 ON Tl.project = T2.unics_ id
WHERE T2.total cost < (SELECT AVG(T23.total cost) FROM
projects AS T23);

This query has a much higher complexity than the first one: it contains a JOIN between two
tables, an aggregation function (AVG) on a numeric column and a nested query which is
indeed necessary for the question at hand.

It is interesting to see that ValueNet correctly understands the sub-sentence “..costing less
than the average”. It has learned this knowledge from somewhat similar questions on
different databases and is now able to correctly generalize on the CORDIS schema.

Page 33 of 85

I nEDD E D3.2 — Second Component Release

INODE Open Data Dialog 2.0 User ID: 21fcd3f8-bada-4abc-a221-679f0eb3fO1

o Project members member nam

valuenet: Find participants.

1 5rows project_members, projects
1 columns
~ A project_members.m

CENTRE NATIONAL DELAR 180
MAXPLNCKGESELLSCH 135
AGENCIA ESTATAL CONSE.. 8
FRAUNHOFER GESELLSCH. &
CONSIGLIO NAZIONALE DE. 7
Otners 9225

Row 0 UNIVERSIDADE DO PORTO

Row 1 FUNDACAO MUSEU DA CIENCIZ

Row 2 ASSOCIACAO VIVER A CIENCIA

Row3 INSTITUTO DE BIOLOGIA MOLE

Row 4 INSTITUT NATIONAL DE LA SA?

Rowsperpage: 5+ 1-50f5

Figure 2.3: ValueNet interpreting the question “Show the name of members in projects
costing less than the average project cost.” on the CORDIS database.

The last example we test ValueNet on is “Show me the acronym of projects with a duration of
more than 5 years.”. ValueNet incorrectly synthesizes the query:

SELECT Tl.acronym FROM projects AS Tl WHERE Tl.end year > 5
(see Figure 2.4).

When analyzing the query we see it is correct except for the fact that “duration” got
translated to “end year”. Here, the model lacks the knowledge that “duration” represents
a time span, which needs to be calculated by subtracting the start from the end year. We
expect the model to be able to synthesize such queries correctly by adding more explicit
training data or by explicitly enriching the ontology with concepts such as duration.

INODE Open Data Dialog 2.0 User |D: ZIfcd3f8-bada-4abc-a221-67f9f0eb3f01

Show me the acronym of projects with a duration of more than 5 years. ‘ ? ‘ ‘ & ‘

o Projects acronym

valuenet: Find the acronyms of projects whose end year is greater than 5.

1 5rows projects
1 columns
~ A projects.acronym (S.

DREAM 5
IMPACT s
IMAGINE s
STARS 4
Disco 4
Others 9962

Row 0 PLEASED

Row 1 FraccingFundamentals

Row 2 lincPeptEvolDev

Row 3 MALGENEXPRESSION

Row 4 BIONICS

Rows perpage: 5+ 150f5

Figure 2.4: ValueNet interpreting the question “Show me the acronym of projects with a
duration of more than 5 years.” on the CORDIS database.

2.1.1.2 Querying SDSS in NL with SODA

For INODE-release 1.0, SODA was applied to the CORDIS data. For the latest release, i.e.,
INODE 2.0, SODA has been configured to work with the SDSS data. Due to our stable API

Page 34 of 85

INGDE

D3.2 — Second Component Release

design, no new functionality was needed to add to SODA for this software release. The
landing page of SODA configured with SDSS is shown in Figure 2.5.

Type your natural language query here

Choose one or more systems to execute
Soda [Keyword]

Choose a database

cordis

©Q sdss

[~)=]

Maximum interpretations per system
3
Maximum number of results per interpretation

5

Figure 2.5: The landing page of INODE-SQL 2.0 shows SODA as an NL-to-SQL translation
system and the newly added SDSS database.

For the following natural language question “Show all objects in photoobj”, SODA returns the
correct SQL query, “SELECT * FROM photoobj” (see Figure 2.6).

INODE Open Data Diqleg 2.0 User ID: bd90157a-a975-4a18-8b%e-292cdd56d307

Show all objects in photoobj

Choose one or mere systems to execute
Soda [Keyword]

Choose a database

[e

Maximum interpretations per system
3

Maximum number of results per interpretation

cordis
5
© sdss
Q Photoobj objid Photoobj type Photoobj ra Photoobj dec Photoobj u Photoot
soda: Find everything about photometric objects.
1 5rows
510 columns
v A photoobj.objid (STRI... # photoob].type (INTE.. # photoobj.ra (DOUBLE) # photoobj.dec (DOUB # photoobj.u (DOUBLE) # ph
1237680502896985124 1
1237680500210009165 1
1237680503435821328 1
123 1 el
1237680500208633085 1 <31 =259 <500 23500 <28.0 2350 <180 2290 <180
Others 4991

Figure 2.6: The landing page of INODE-SQL 2.0 shows the NL query “Show all objects in
photoobj” for the SDSS database as well as the SQL interpretation returned by SODA.

The following natural language question “Find all objects with right ascension greater than
100” can be answered by SODA in a keyword question format, “ra > 100 photoobj”
SODA returns the correct query in the list of possible interpretations (see Figure 2.7).

Page 35 of 85

I nEDD E D3.2 — Second Component Release

INODE Open Data Dialog 2.0 User ID: bd901572-a975-4216-8b9e-292cddS6307

Choose one or more systems to execute Maximu interpretations per system

Soda [Keyword] N

Choose a database Maximum number of results per interpretation
cordis
s
O sdss

£ Photoobjobjid Photoobj type Photoob clean Photoob ra Photoob dec Photoobj u Photoobj g Photoob r Photoobj i Photoobj z

soda: Find everything about photometric objects whose right ascension error is greater than 100,
photoobj

v A photoobj objid (STR! # photoob]type (INTE # photoob] clean (INT. # photoobra (DOUBLE) A photoobjdec (STRIN. # photoobju(DOUBLE) # photoobj,g (DOUBLE) # photoobj.r (DOUBLE) # photoobji (DOUBLE) # photoobjz (¢

<100 =2100 R N Gt lB 2000000 < 2324400002 232720000 < 21.0 =245 <2005 =205 <20.2000000

soda: Find everything about photometric objects whose right ascension i greater than 100.

photoobj
v # photoobtype (NTE # photoob clean (INT. # photoobjra (DOUBLE) # photoobj dec (DOUB. # photoobju(DOUBLE) # photoobjg (DOUBLE) # photoobjr (DOUBLE) # photoobj (DOUBLE) # photoobiz (¢
<31 Z59 <01 208 <3320 23590 <250 =350 <190 =20 <170 =260 <150 =250 <150 =250 <150
soda: Find everything about photometric objects and everything about spectroscopic objects whose right ascension is greater than 100 for spectroscopic objects corresponding to these photometric objects.
specobj, photoobj
v 4 photoobj type (INTE. 4 photoobi lean (NT. # photoobja (DOUBLE)

(STRIN # photoobju(DOUBLE) # photoobj.g (DOUBLE) # photoobj.r (DOUBLE) # photoobji (DOUBLE) # photoobjz (¢

<10 250 <01 200 <1100 23400 <150 =270 <130 =250 <130 =250 <120 =240 <120

Figure 2.7: SODA keyword query “ra > 100 photoobj” for SDSS database.

From all of the information, which SODA took as input in the previous two examples, it was
able to produce correct SQL queries. However, SODA currently cannot handle queries that
contain information from two or more tables that have columns of the same name, which is
common across the 5 tables of the SDSS database. For example “Find all photometrically
observed galaxies with right ascension greater than 100 and declination less than 1007
which corresponds to the following SODA keyword query “Photoobj ra > 100 dec
< 100”. Here, SODA does not return the correct query, which should only contain elements
from a single table, photoobj, rather than queries with joins to another table in the
database (see Figure 2.8).

INODE Open Data Dialog 2.0 User ID: bd90157a-2975-4218-8b9€-292cdd56d307

Choose ane or more systems to execute Maximun interpretations per system

Soda [Keyword] s

Choose a database Maximum number of results per interpretation

cordis

O sdss

5

g Photoobjobjd Photoobj type Photoobj clean Photoob ra Photoobj dec Photoobj u Photoobj g Photoobj r Photoobj i Photoobj 2.

soda: Find everything about photometric objects whose decerr s less than 100
photoobj

v 4 photoobi type (NTE # photoob clean (NT. # photoob.ra (DOUBLE) # photoob.dec (00U, # Photoobju(DOUBLE) # photoobjg (DOUBLE) # photoobir (DOUBLE) # photoob} (00UBLE) # photoobjz (¢
<31 =58 <01 =00 <800 23500 <10 =30 <60 =270 <10 =260 <130 =200 <120 =240 <140
soda: Find everything about spectroscopic objects. Also find everything about the involved photometric objects.
specobj, photoobj
v # photoobi clean (INT. # photoobira (DOUBLE) # photoob] dec (DOUB. # photoobju(DOUBLE) # photoobjg(DOUBLE) # photoobr (DOUBLE) # photoobj i (DOUBLE) # photoobiz (¢
<01 =00 <800 23000 <01 2140000000 <160 =270 <130 =250 <130 =290 <120 =240 <140
soda: Find everything about spectroscopic objects whose declination is less than 100,
1 srows specobj
195 colum

Figure 2.8: Incorrectly returned interpretation for the keyword query ‘’Photoobj ra >
100 dec < 1007 Inthe upper result, the NL explanation provides a valuable hint why this
might be the case: “... whose decerr is less than 100", Furthermore, the histograms of column

4 (photoobj ra) indicate that the “ra > 100” condition has been ignored.

Page 36 of 85

I n@D E D3.2 — Second Component Release

In order to mitigate this problem, the domain ontology of the SDSS dataset will be enriched
with additional semantic information about objects in the sky.

2.1.2 SQL-to-NL: Explaining SQL Queries Using Natural Language

Logos has been improved to generate better explanations for the CORDIS data as we
explained in Section 1.4.1, compared to the earlier version of INODE. In the current version,
we have enabled explanations for SDSS queries. Furthermore, NL explanations now appear in
several places on the Ul (a) to help the user understand which queries were generated for a
user NL query as well as (b) to explain the queries executed by the pipeline operators, hence
offering a better user experience.

We will show examples of how it works with SDSS queries.

Let us assume that we want to address the query “Find all photometrically observed stars”
against the SDSS database. By clicking the gear button (see Figure 2.5), a menu appears that
enables the user to choose between the available NL to SQL translation systems and
databases (CORDIS, SDSS), as well as to pick the desired number of interpretations and
results per interpretation (tuples). For the SDSS database, the available system is SODA.

In addition, let us say that we want only two interpretations produced by the system SODA
and only 10 tuples to be retrieved for these produced queries. We continue by typing the NL
query we want to submit, in this case “photoobj type = 6” where type 6 corresponds to
photometric objects which are stars.

Once submitted, the interpretations returned by the INODE system are those depicted in
Figure 2.9. Each interpretation refers to a different query produced by the SODA system. One
of those queries is possibly the one we are looking for. Certainly, that query is the first one
“Find everything about photometric objects whose object type classification is 6”.

¢ Photooby objid Phiotoob) type Photoobj clean
soda: Find everything about photometric objects whose object type classificationis 6
I 10rows photoobj
=+ 510 columns
u A photocbj.objid (STR # photoobj.type (INTE... # photoob) clean (INT.
TE209036 _ I
123751 N 4263482963 " g
Othere 250t =01 2.5
soda: Find everything about photometric objects whose type | s 6
I 10rows photoobj
+—¢ 510 columns
bl A photoo jid {STR # photoobj.type (INTE # photoabj.clean (INT

1

< 0.1 209

n

":.':.. R 4991 < 3.1

Figure 2.9: Returned interpretations.

Page 37 of 85

I nﬁD E D3.2 — Second Component Release

One may ask more about each of the produced interpretations. For instance, let us say that
we want to explore more about the query under study (first query retrieved by the system).
The only thing we have to do is to press the pointing-down arrow and afterwards continue by
pressing the three dots button. A menu showing the available exploration operators is shown
to the user (see Figure 2.10).

4 Phaotochj obyjid Phaotooh type Phaotochj clean

soda: Find everything about photometric objects whose object type classification is &

1 10rows photoobj

+— 510 columns

~ A photoob.objid (5TR # photoobj.type (INTE # photoohj.clean (INT
2376515403131 12060 1
123785171 533318272 1 I
< 0.1 z20.9
frg Explore by superset & 1
Ra Explore by recommendation 6 1
Ro Explore by natural language b 1
RS Give feedback b 1
R TESF T T T e T T 6 1
Rows PEr page: 3 v 1-5 of 10 % %

Figure 2.10: Operators menu.

For any pipeline operator (e.g., by-recommendation, etc.) the process is the same. Assuming
that we want to explore by superset, we press the corresponding button and we get the
following explained query (see Figure 2.11).

Photoobj objid Photoobj type

Find everything about photometric objects.

I 10rows
+— 510 columns

A photoobj.objid (STRI... # photoobj.type (INTE...
1237666408441250169 1
1237666407942 586487 1

1237666405994111533 1

1237666420982601 504 1 _

1237666407923187757 1

Others 4991

< 3.1 =59

Figure 2.11: Interpretation returned using the by-superset operator.

Page 38 of 85

I nﬁD E D3.2 — Second Component Release

Undoubtedly, the set containing all the photometric objects is a superset of the set
containing only the photometric objects that are stars.

2.1.3 Recommending Queries (PyExplore)

The figures below, show where the query recommendations appear on the INODE user
interface. Pressing the pointing-down arrow and the three dots button, we can select from
the menu the option to see recommendations based on data correlations that are generated
by PyExplore.

INODE Open Data Dialog 2.0 User ID: 64137e51-7523-4322-bd4c-00cc3760€155

project start_year < 2018 [;] { & ‘

Progress: 2 of 3 systems finished.

Stop Execution

o Projects title Projects total cost Projects unics id Projects acronym Projects ec call Projects ec fund scheme Projects cordis ref Project

nalir+: Find the titles and total costs of projects whose total cost is less than 2018. Return only unique records.

1 5rows projects
2 columns

projects.total_cost (

valuenet: Find everything about projects whose start year is less than 2018.

1 5rows projects
17 columns

v A projects.title (STRIN.. # projects.total_cost (.. # projects.unics_id (IN.. A projects.acronym (S.. A projects.ec_call (ST. A projects.ec_fund_sc.. # projects.cordis_ref (I # pr
Devel solgel IMPACT 7 H2020 MSCA IF-2015 347 MCIEF 984
Novel ge syst 2 DREAM 6 H2020- MSCA-IF-2014 339 MSCAIF EF ST 70
INTERACT 5 12020 SMEINST1.201 241 o 664
Explore ta ICARUS 5 12020 MSCAIF-2016 224 cPep 536
Explore table <1000000.0 =9000000.0 <200000.0 =800000.0 PRIME 5 FP7.PEOPLE 2013 IEF 179 SME1 478 <90000.0 2210000.0 <2000
Others 9956 Others 8053 Others 999

Explore by superset
. Explore by recommendation
Explore by natural language

Give feedback

Figure 2.12: Selecting the by-recommendation operator.

Find everything about projects whose start year is less than 2018. Also find everything about the involved project programn
1 5rows
19 columns

v # project_programmes... A project_programmes... # projects.unics_id (IN... A projects.acronym (S... 1
FP7-PEOPLE 2502 STORM 7]

H2020-EU.2.3.1. 1286 IMPACT 7 l

FP7-IDEAS-ERC 1131 TRUST 6 \

H2020-EU.1.3.2. 596 OWISE4EU 5 i

<150000.0 >220000.0 FP7-ICT 497 < 150000.0 >220000.0 DEEPVIEW 5]

Others 2952 Others 9950 (

Find everything about projects whose start year is less than 2018. Also find everything about the involved project programn
1 5rows
19 columns

v # project_programmes... A project_programmes... # projects.unics_id (IN... A projects.acronym (S... 1
RESOLVE 3 i

‘ IMPACT 3 1

MARS 3 4

GAIA 2)

<150000.0 =220000.0 <150000.0 =>220000.0 SURE 2 i

Others 3877 (

Figure 2.13: Recommended queries for projects with start year less than 2018.

Page 39 of 85

I nﬁD E D3.2 — Second Component Release

INODE Open Data Dialog 2.0

23-4322-bd4c-00cc3760:

Type your natural language query here [2 l P ‘ Subm ‘

o Projects title Projects unics id Projects acronym Projects ec call Projects ec fund scheme Projects cordis ref Projects ec ref Project

Find everything about projects whose start year is greater than 2018 and start year is less than 2019.5.

1 srows projects
17 columns

v A projectsditle (STRIN. # projects.unics_id (IN. A projects.acronym (S. A projects.ec_call (ST. A projects.ec_fund_sc # projects.cordis_ref (1 # projects.ec_ref (INT. A pr
Investigating protective 2 Ecro 4 2020 MSCA F 2018 916 MSCAIF-EFST S64 201901
imaging, Spectroscopy 1 IMAGINE i H2020 SMEnst 20152 515 SVET 515 201505
SEMIDISPOSABLE INS. 1 INSPIRE s H2020 MSCA-F 2017 105 RIA 414 201909
Prediction and Visual I 1 GRACE 3 ERC2018:5TG 330 ERCSTG 333 2019.06-
Utiizing Urban Tech to 1 <300000.0 =1200000.0 REACT 3 ERC2018.C0G 269 ERC.COG 263 <210000.0 2224000.0 <760000.0 =860000.0 201502
Others 3 Others PiEn Others 1265 Others 528 Others

Find everything about projects whose start year is greater than 2018 and start year is greater than or equal to 2019.5.

1 srows projects
17 columns

v A projectstitle (STRIN... # projects.unics._id (IN. A projects.acronym (S. A projects.ec_call (ST. A projects.ec_fund_sc... # projects.cordis._ref (1. # projects.ec_ref (INT... r
Transiatio! The art o (). 3 MMIC 2 2020 MSCAIF 2018 7 MSCAIFEFST 72 202001
Unraveling the combinato 1 HYMNS 1 ERC 2018 AD 12 MSCAIF-GF & 202009
o-dimensional magne. 1 CREDIL 1 H2020 WF-012018 MSCAIF-EFRI 3 202002
Checkpolnts n the bacter 1 1 12020 MSCACOFUND2 5 ERC ADG 1 202003
Dissecting GLP-1 recepto. i <3000000 =1200000.0 CHROME 1 ERC-2018.006 6 MSCAIFEF-CAR 2 <215000.0 22240000 <790000.0 =860000.0 202004
Others a9 Others 8 Otvers 4 Others
Find everything about projects whose start year is greater than 2018, max_contribution is less than 2749487.5 and fund scheme is in {ria}.
1 srows projects
17 columns
v A projects.title (STRIN. # projects.unics_id (IN A projects.acronym (S. A projects.ec_call (ST. A projects.ec_fund_sc. # projects.cordis_ref (1 # projects.ec_ref (INT. A pr
RETHINK T RETHINK j 12020 SwafS-2018-1 7 201901
GRant AllocatioN Disparitie. 1 GLoBE 1 H2020 FETOPEN-20182015-.. 6 2019.02
Formation flight for in-Air L. 1 SocialRES 1 H2020-SPACE-2018 3 26 elements 2019-03-
blo-mimetic and phytotech.. 1 ENEFIRST 1 H2020AC SC3EE 2018 2 RIA 201906
Ko genarion metemae. 1 <900000.0 = 1250000.0 . 1 120205 2 <219000.0 =224000.0 <821000.0 =846000.0 201509
Others 7 Others 7 Others 1

Figure 2.14: Recommended queries for projects with start year greater than 2018.

2.1.4 Pipeline Operators

The following screenshots are from the “Galaxy exploration app”, since the operators could
not be integrated in the current OpenDataDialog 2.0 release. First steps towards integration
have been undertaken however, for example the support to image URL data types as seen in
Section 1.4.

In this app, the data is composed of 2.6M galaxies with 10 continuous numerical attributes
binned in 10 equal depth bins.

Page 40 of 85

INGDE

D3.2 — Second Component Release

Those attributes have an intrinsic order allowing us to use by-neighbors and by-distribution:

e By-neighbors

Galaxy sets

Set 87 u = (-9999.001, 19.264] g = (-9999.001, 17.752]

Set 106 u = (20.095,21.233] g = (18.384, 19.341]

SIS PLY 161946 galaxies | u = (19.264, 20.095] g = (17.752, 18.384]

Operator selection

Next operator to execute

neighbors v

Select on which dimensions
Cu

Bg

[get the summary scores

[get the predicted scores

Pipeline management

Restart Save Load

Figure 2.15: Selection of the input subset (on the left hand side), the by-neighbors operator
(in the drop-down menu on the right side), and the dimension to use (magnitude g).

The astrophysicist using the application finds a set of interests during their exploration. The
set is described by two ranges of values: on the magnitude (on the spectrum range) ‘u’ the

values are filtered between 20.095 and 21.233, and on the magnitude ‘g

" between 18.384

and 19.341. The scientist would like to see sets with the same range of values on the

magnitude ‘u’, but slightly different values on the magnitude ‘g’.

They select the set, the by-neighbors operator and the magnitude ‘g’, and obtains the

following results:

Page 41 of 85

I n@D E D3.2 — Second Component Release

Galaxy sets

STAQLSTE] 49054 galaxies | u = (20.095, 21.233] g = (17.752, 18.384]

SIS 180648 galaxies | u = (20.095, 21.233] g = (18.384, 19.341]

Set 1839 u = (20.095, 21.233] g = (19.341, 20.773]

Figure 2.16: The resulting sets, the input set in the middle, the set on the lower range on the
magnitude ‘g’ above, and the set on the higher range on the magnitude ‘g’ below.

The input set, plus two sets sharing the same range on the magnitude ‘u’, with the ranges
below and above on the magnitude ‘g’

o 17.752->18.384
o 19.341->20.773
e By-distribution

The astrophysicist using the application finds a set of interests during their exploration. The
set is described by three ranges of values, on the magnitude (on the spectrum range) ‘u’ the
values are filtered between 21.233 and 22.228, on the magnitude ‘g’ between 18.384 and
19.341, and on the magnitude ‘i’ between 17.063 and 17.545. They find the relations
between the three magnitudes in this set interesting, and would like to see more sharing the
same relations to see if an interesting pattern appears.

Set 2564 u=(21.233,22.228] g=(18.384,19.341] i=(17.063,17.545]

Figure 2.17: The input set selected with the three magnitude ranges.

Page 42 of 85

I n@D E D3.2 — Second Component Release

They select the set and the by-distribution operator, and obtain the following results:

LKLY 43213 galaxies | i = (17.545, 18.473] u=(22.228, 22.76] g =(19.341, 20.773]

L QLY 25855 galaxies | i = (18.473, 19.059] u=(22.76,23.246] g =(20.773, 21.445]

Set 3751 i=(19.059,19.43] u=(23.246,23.808] g = (21.445, 21.871]

L L] 14926 galaxies | i = (10.43, 19.682] u=(23.808, 24.54] g=(21.871,22.194]

Rl v li] 16870 galaxies | = (19.682, 19.973] u = (24.54,25.475] g = (22.194, 22.527]

Set 4045 i=(19.973,20.634] u=(25.475,33.45] g=(22.527,22.998]

Set 1204 i=(16.506, 17.063] u=(20.095, 21.233] g=(17.752, 18.384]

Set 767 i .001, u = (19.264, 20.095] g = (-9999.001, 17.752]

Figure 2.18: The sets resulting from the use of the by-distribution operator.

Page 43 of 85

I n@D E D3.2 — Second Component Release

The ranges describing the input set in the magnitudes u, g, and i were the third on u, the
second on g and the second on i. So we can simplify it as the following description: [3,2,2].

By-distribution has returned all the sets keeping the same difference between the range
indexes.

Hence the resulting sets [1,0,0], [2,1,1], [4,3,3], [5,4,4], [6,5,5], [7,6,6] , [8,7,7], and [9,8,8]
provide a wide range of very different galaxies to study.

2.1.5 Summary

We have demonstrated many of the new features within OpenDataDialog 2.0. It became
apparent that all operators, despite their complexity and variety, can be used from within
one single web application.

2.2 OpenDatalinking

In this section we will demonstrate the OpenDatalinking services of INODE-SQL 2.0 based on
several open datasets as well as on cancer research (OncoMX).

The OpenDatalinking component of INODE-SQL 2.0 introduces a set of improvements on the
triple extraction process as well as a unified extraction approach that relies on a triple
refinement algorithm implemented by ZHAW to efficiently consolidate the extracted triples
from both the ZHAW and the Infili engines. Our system encompasses a set of information
extraction methods to distill structured knowledge from unstructured text by identifying
references to named entities as well as stated relationships between such entities.

2.2.1 Triple Refinement

The need for a triple refinement method originated from the fact that a simple combination
of the outputs stemming from the precision-oriented ZHAW approach and the recall-oriented
Infili approach did not automatically yield optimal results. The triple refinement method is
based on a reverse implementation of the ZHAW dependency parsing approach for triple
extraction and can be explained with the following example from the CaRB development
set™:

Instead of having system calls specifically for process management,
Plan 9 provides the codice 13 file system.

A triple output by the Infili engine is as follows:

Plan 9 ; provides ; the codice 13 file system Instead of having system
calls specifically for process management

% Sangnie Bhardwaj, Samarth Aggarwal, and Mausam. CARB: A crowdsourced benchmark for open IE.
In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the
9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). 2020.

Page 44 of 85

I n@D E D3.2 — Second Component Release

This triple, while scoring well on recall, has low precision due to the unnecessary clause
Instead of having system calls specifically for process management.

On the other hand, the ZHAW engine often omits messy triples (i.e., triples stemming from
complex sentences, containing one or more uninformative/unnecessary clauses) entirely, in
order to preserve precision. By feeding the Infili triples back into the ZHAW engine, we can
gain new triples, but maintain precision. Hence, the idea of the combined system is to
increase both the recall and the precision of the triple extraction process.

The refinement algorithm marks the tokens from an extracted triple on the dependency tree
for that sentence. It then searches for the three head-words of the subject, predicate, and
object. These head-words are the roots of the largest connected components of the subject,
predicate, and object sub-trees. The three head-words are then fed into the ZHAW pipeline
to produce a modified triple.

In contrast, the ZHAW engine searches for these head-words itself, before expanding them
into full triples. However, since the ZHAW engine uses high-precision rules, many head-words
are not found with this method, and we leverage the high-recall Infili engine to find new
triples, then refine them. An example of this is shown in Figure 2.19.

Instead

ﬁmeldeNn ct

of having

lccomp

calls

ﬁbj ladvnNod

system specifically management
% fompourb‘aN‘relcl
for process . provides
/subj\':bj
Plan system
@ ’%fampounmmpaund
9 the codice _ 13 file
provides
fsubJNibj
Plan system
nummod det F;mpoun%ompound nummod ™\ compound
9 the codice _ 13 file

Figure 2.19: Original dependency tree with old triple marked, and pruned dependency tree
with new refined triple marked.

Page 45 of 85

I n@D E D3.2 — Second Component Release

The new triple is now:

(Plan 9 ; provides ; the codice 13 file system)

Compared to the output from the Infili engine, the subordinate clause Instead of
having system calls specifically for process management is discarded by the
triple refinement process.

Additional improvements were also implemented to ensure the seamless integration of the
triple refinement system with the OncoMX data. More specifically, the following settings
have been added to the ZHAW triple extractor and combiner, to adapt it to various use cases:

® enhanced predicates: When this setting is enabled, the predicate contains
additional descriptive information, and the subject and object are simplified. This is
better suited to the OncoMX use case, since the predicate remains in plain text,
while the subject and object are mapped to ontologies. For example in the sentence:

Blood E2F3 mRNA levels were significantly higher in lung cancer
patients when compared to either patients with benign lung
diseases or healthy subjects.

The enhanced_predicates version is as follows:

(Blood E2F3 mRNA levels ; were significantly higher in ;
lung cancer patients)

While the standard version keeps the shorter extracted predicate:

(Blood E2F3 mRNA levels ; were ; significantly higher in lung
cancer patients)

® entity context: This setting provides additional contextual (temporal, location,
etc.) information for the subject and object of each triple. For example in the
aforementioned sentence, we can produce triples with an additional field dedicated
to such information, as shown below:

(Blood E2F3 mRNA levels ; were significantly higher in ; lung
cancer patients ; when compared to either patients with benign
lung diseases or healthy subjects)

e split triples: This setting allows for splitting or merging conjunctive phrases into
sub-triples depending on the current needs. For example, in the following sentence:

Long non-coding RNA CCAT2 plays an important role in
tumorigenesis, tumor growth and metastasis.

We can extract three separated triples for each sub-entity:

(Long non-coding RNA LncRNA CCAT2 ; plays ; an important role in
tumor growth)

(Long non-coding RNA LncRNA CCAT2 ; plays ; an important role in
metastasis)

Page 46 of 85

I n@D E D3.2 — Second Component Release

(Long non-coding RNA LncRNA CCAT2 ; plays ; an important role in
tumorigenesis)

Or merge them into a single entity:

(Long non-coding RNA LncRNA CCAT2 ; plays ; an important role in
tumorigenesis tumor growth and metastasis)

2.3 Integration of OpenDataLinking with OpenDataDialog

This section aims at showcasing the information extraction as well as entity linking
capabilities (i.e., the aligning of textual mentions of named entities to their corresponding
entries in a knowledge base) of the INODE-SQL 2.0 system as an integrated platform. To this
end, we provide a set of preliminary SQL queries, their natural language explanation, and the
expected query result, both for the OncoMX dataset (biomarkers use case) and for the
CORDIS dataset. It should be noted that the NL-to-SQL functionality is not yet implemented
for the Biomarkers Use Case. However, the following examples serve as an early
demonstration of the final INODE system.

Biomarkers Use Case

S()L SELECT distinct gene, uberonname, uberon
Q 1 FROM triples_fully linked v2
uery WHERE

[

(predicate like 'Soverexpress$%' or

(predicate like 'Sexpress$' and (subject like 'Sover$%$' or

triples fully linked v2.object like '%over%')) or

(subject like '%overexpress$' or triples fully linked v2.object like
'Soverexpress$')) and

(subject like '%cancer%' or triples fully linked v2.object like
'%Scancer$') and polarity='TRUE'

NL Find all anatomic entities where genes are overexpressed due to some cancer
equivalent reported in the literature.

As described in D3.1, one of the goals of the OpenDataLinking component
was the extraction of triples from NL-text of cancer-related Pubmed articles.
The triples were linked to existing concepts (anatomical entities) of the Uberon
ontology and to genes of the OncoMX database upon extraction, then added
Explanation | to the latest version of the OncoMX database. Based on this, we are now able
to find all literature cases (derived from triple extraction on Pubmed articles)
that include “over-expression” of a gene on a human body part with cancer.
“Over-expression” synonyms such as “increased expression” are not
considered in this case.

Page 47 of 85

INGDE

D3.2 — Second Component Release

Result
(latest
version- v2)

n uberonname

1 AMACR prostate gland UBERON:0002367

2 NR4A1 breast UBERON:0000310

3 MDK lung UBERON:0002048

4 HMGB1 lung UBERON:0002048

5 LAPTM4B lung UBERON:0002048

6 ERBB2 cutaneous appendage UBERON:0000021

7 RHOA breast UBERON:0000310

8 GPI prostate gland UBERON:0002367

9 IGF2 tissue UBERON:0000479
10 AGR2 prostate gland UBERON:0002367
11 ECM1 tissue UBERON:0000479
12 EGFR lung UBERON:0002048
13 EPCAM prostate gland UBERON:0002367
14 5LPI tissue UBERON:0000479
15 KLKB tissue UBERON:0000479
16 EGFR breast UBERON:0000310
17 EGFR colon UBERON:0001155
18 CD24 breast UBERON:0000310
19 HSPS0AB1 lung UBERON:0002048
20 CD59 lung UBERON:0002048
21 TNF adult cerebral ganglion UBERON:6110636
22 GDNF tissue UBERON:0000479
23 AGR2 urine UBERON:0001088
24 RET breast UBERON:0000310
25 IGFBP2 lung UBERON:0002048
26 TMPRS552 prostate gland UBERON:0002367
27 TSPANS tissue UBERON:0000479
28 CDH3 adult organism UBERON:0007023
29 GPI posterior communicating artery UBERON:0001628
30 MET cutaneous appendage UBERON:0000021
31 EGFR thyroid gland UBERON:0002046
32 MUC1 breast UBERON:0000310
33 EGFR prostate gland UBERON:0002367
34 MET lung UBERON:0002048
35 ERG prostate gland UBERON:0002367
36 HMGB1 _ tissue UBERON:0000479
37 PSCA prostate gland UBERON:0002367
38 CXCL13 blood UBERON:0000178
39 TFF3 prostate gland UBERON:0002367
40 CDH3 tissue UBERON:0000479
41 FYN prostate gland UBERON:0002367
42 ERBB2 breast UBERON:0000310
43 CXCL13 breast UBERON:0000310
44 CEACAMS colon UBERON:0001155
45 EGFR tissue UBERON:0000479
46 MALATL liver UBERON:0002107
47 PSATL colon UBERON:0001155
48 MYC prostate gland UBERON:0002367
49 CYP1B1 prostate gland UBERON:0002367
50 ECM1 breast UBERON:0000310
51 RABSA breast UBERON:0000310
52 SLPI colon UBERON:0001155
53 RAC1 tissue UBERON:0000479
54 L1ICAM tissue UBERON:0000479
55 TSPANS lung UBERON:0002048
56 TNF adult organism UBERON:0007023
57 IGFBP2 tissue UBERON:0000479
58 PSCA posterior communicating artery UBERON:0001628
59 EGFR head UBERON:0000033
60 EGFR neck UBERON:0000974
61 MIF prostate gland UBERON:0002367
62 S100A4 lung UBERON:0002048
63 TNF adult brain UBERON:6003624
64 HMGB1 blood serum UBERON:0001577
65 MET colon UBERON:0001155
66 CCND1 breast UBERON:0000310
67 MUCL posterior communicating artery UBERON:0001628
68 EPCAM breast UBERON:0000310
69 EGFR integument UBERON:0002199
70 UBQLN1 breast UBERON:0000310

Page 48 of 85

I n@D E D3.2 — Second Component Release

8 ngene n uberonname n uberon -

1 MTAL lung UBERON:0002048

2 TSPAN13 tissue UBERON:0000479

3 LPIN1 breast UBERON:0000310

4 HMGB1 tissue UBERON:0000479

5 AMFR breast UBERON:0000310

6 RHOA breast UBERON:0000310

7 RAC1 breast UBERON:0000310

& ERBB3 breast UBERON:0000310

3 ERBB2 breast UBERON:0000310

10 50x%2 lung UBERON:0002048

11 AMACR breast UBERON:0000310

12 EGFR lung UBERON:0002048

13 ERBB2 colon UBERON:0001155

14 EGFR tissue UBERON:0000479

15 CEACAMS colon UBERON:0001155

16 EGFR breast UBERON:0000310

Result 17 EGFR___colon UBERON:0001155
(o|der-v1) 18 SLPI colon UBERON:0001155
19 50x%2 breast UBERON:0000310

20 MUCL primary somatosensory cortex UBERON:0008933
21 HMGB1 primary somatosensory cortex UBERON:0008933

22 EGFR head UBEROMN:0000033
23 EGFR neck UBERON:0000974
24 TFF3 tissue UBERON:0000473
25 EGFR primary somatosensory cortex UBERON:0008933
26 ERBB2 pancreas UBERON:0001264
27 PRMT1 lung UBERON:0002043
28 CCND1 breast UBERON:0000310
29 STAT1 neck UBERON:0000974
30 STAT1 head UBEROMN:0000033
31 ERBB2 gland UBERON:0002530
32 MET breast UBERON:0000310
33 MUC1 breast UBERON:0000310
34 MYC breast UBERON:0000310
35 MET lung UBERON:0002048
The efficient combination of the two OIE engines’ outputs by leveraging the
Improve- . ! . . .
triple refinement approach introduced in v2, leads to the doubling of the
ments over
vi extracted triples that are linked with gene overexpression due to cancer.
Hence, the new version increases the recall for triple extraction.
SQL SELECT distinct gene, uberonname, uberon
FROM [Eriples fully link v2
Query 2 WHERFE S = —
(predicate like 'Soverexpress$%' or
(predicate like '$express$' and (subject like 'Sover$%' or
triples fully linked v2.object like '%over%')) or
(subject like '%overexpress$' or triples fully linked v2.object like
'Soverexpress$')) and
(subject like '%cancer%' or triples fully linked v2.object like
'%$cancer%') and
polarity="'TRUE' and uberonname='breast'
NL What are the genes overexpressed in breast cancer reported|in the literature?
equivalent

Similar to the above query, we again exploit the extraction of triples from the
literature (PubMed articles) and their mapping to genes and anatomical
entities. This time, however, we specialize our query on finding all literature
cases that include “over-expression” of a gene, specifically on breast cancer.

Explanation

Page 49 of 85

I n@D E D3.2 — Second Component Release

Once again, “over-expression” synonyms such as “increased expression” are
not considered.
ngene nuhemnnamenubemn -
1 EGFR breast UBERON:0000310
2 EPCAM breast UBERON:0000310
3 CD24 breast UBEROMN:0000310
4 NRAAL1 breast UBERON:0000310
5 ECM1 breast UBERON:0000310
Result
latest 5 RABSA breast UBERON:0000310
(lates 7 CXCL13 breast UBERON:0000310
version- v2) 8 UBQLN1 breast UBERON:0000310
9 MUC1 breast UBEROMN:0000310
10 RET breast UBERON:0000310
11 RHOA breast UBERON:0000310
12 ERBB2 breast UBEROMN:0000310
13 CCND1 breast UBERON:0000310
ngene nuhemnnamenubemn T
1 EGFR breast UBERON:0000310
2 50%2 breast UBERON:0000310
3 LPIN1 breast UBERON:0000310
4 CCND1 breast UBERON:0000310
5 AMACR breast UBERON:0000310
Result 6 AMFR breast UBEROMN:0000310
(older-v1) 7 MET breast UBERON:0000310
8 MUC1 breast UBERON:0000310
9 MYC breast UBERON:0000310
10 RHOA breast UBERON:0000310
11 RAC1 breast UBERON:0000310
12 ERBB3 breast UBERON:0000310
13 ERBB2 breast UBERON:0000310
While the number of literature extractions remains the same, the latest version
Improve- provides less false positives (i.e., triples that are incorrectly linked to gene
ments over | overexpression due to breast cancer). This is also verified in the next example
v1 where we compare with the curated gene list. Hence, the new version
increases the precision for triple extraction.
SQL select *
Q 3 FROM (select distinct gene, uberonname, uberon
uery FROM triples_fully linked v2
WHERE (predicate like 'Soverexpress$' or
(predicate like '%express$%' and (subject like 'Sover$' or
triples_fully linked v2.object like '%over%')) or
(subject like '%overexpress%' or triples fully linked v2.object like
'Soverexpress%')) and
(subject like '%cancer%' or triples fully linked v2.object like
'%cancer%') and polarity='TRUE' and uberonname='breast') as tl
LEFT JOIN
(select distinct de.gene symbol, d.name from differential expression
as de join disease as d on d.id = de.doid
where d.name = 'breast cancer' and expression change direction='up'
and de.statistical significance = 'Yes') as t2 on
t2.gene symbol=tl.gene
NL Compare breast cancer differentially expressed upregulated genes that are
. statistically significant with the same genes overexpressed in breast cancer
equivalent :
from the literature.

Page 50 of 85

I n@D E D3.2 — Second Component Release

One of the goals of INODE is to enrich existing ontologies by exploiting text
mining (triple extraction, entity linking) approaches. In our case, the OncoMX
database already contains a curated list of genes that are found to be
expressed on different cancer types.Therefore, the purpose of this query is to
compare the curated results from the existing differential_expression table of
OncoMX with literature extractions based on our OIE approach. Only the rows
with non-null value columns correspond to validated extractions that were
found in the differential_expression table (aka the literature extraction confirms
Explanation | the curated mention).

In the results that follow, we can see that some false positives have been
recorded by the information extraction engines (with NULL columns). For
example, that EGFR is shown in literature to be overexpressed in breast
cancer while the curated OncoMX cancer differential expression dataset
states as being down regulated. This contradiction is also the case of other
information extraction approaches used by domain experts. Our hypothesis is
that the contradictory results depend on the experiment conditions and
conclusions performed and reported in different research articles.

ngene nubemnnamen uberon ngene_s-umbulnname -
1 RET breast UBEROMN:0000310 RET breast cancer
2 CCND1 breast UBEROM:0000310 CCND1 breast cancer
3 UBQLN1 breast UBEROM:0000310 UBQOLN1 breast cancer
4 ERBB2 breast UBEROMN:0000310 ERBB2 breast cancer
5 CD24 breast UBEROM:0000310 CD24 breast cancer
Result 6 EPCAM breast UBEROM:0000310 EPCAM breast cancer
(Iate_St 7 ECM1 breast UBEROM:0000310 ECM1 breast cancer
version- v2) 8 MUC1 breast UBEROM:0000310 MUC1 breast cancer
9 CXCL13 breast UBEROMN:0000310 CXCL13 breast cancer
10 NR4A1 breast UBEROM:0000310
11 EGFR breast UBEROM:0000310
12 RAB5A breast UBEROM:0000310
13 RHOA breast UBEROMN:0000310
ngene nubemnnamen uberon ngene_s-umbuln name -
1 CCND1 breast UBERON:0000310 CCND1 breast cancer
2 RAC1 breast UBERON:0000310 RAC1 breast cancer
3 S0X2 breast UBERON:0000310 SOX2 breast cancer
4 ERBB2 breast UBERON:0000310 ERBB2 breast cancer
5 ERBB3 breast UBERON:0000310 ERBB3 breast cancer
Result 6 AMACR breast UBERON:0000310 AMACR breast cancer
(older-v1) 7 AMFR breast UBERON:0000310 AMFR breast cancer
8 MUC1 breast UBERON:0000310 MUC1 breast cancer
9 LPIN1 breast UBERON:0000310
10 EGFR breast UBERON:0000310
11 RHOA breast UBERON:0000310
12 MY(C breast UBEROMN:0000310
13 MET breast UBERON:0000310

Improveme | We observe that the latest version provides a higher number of verified results
nts over v1 compared to v1, as a result of the efficient triple unification approach.

SQL SELECT *
Query4 FROM (select distinct gene, uberonname, uberon

Page 51 of 85

INGDE

FROM triples_fully linked v2

WHERE (predicate like '$overexpress$' or

(predicate like 'Sexpress$' and (subject like 'Sover%' or
triples_fully linked v2.object like 'S%over%')) or

(subject like '%overexpress$' or triples fully linked v2.object like
'Soverexpress%')) and

1o

(subject like '%cancer%' or triples fully linked v2.object like

'$cancer%') and polarity='TRUE' and uberonname='breast') as tl

LEFT JOIN

(select distinct de.gene_ symbol, d.name from differential expression as
de join disease as d on d.id = de.doid where d.name = 'breast cancer'

and expression change direction='down') as t2 on

t2.gene symbol=tl.gene

D3.2 — Second Component Release

NL Compare breast cancer differentially expressed downregulated genes with the
equivalent | same genes overexpressed in breast cancer from the literature.
The purpose of this query is similar to SQL Query 3. This time we compare the
upregulated genes found by information extraction to the downregulated
Explana- genes of the curated table to discover potential false assignments. Ideally we
tion would like all records to contain NULLs as a result of the JOIN, since a non-null
row means that a gene found by information extraction to be upregulated in
breast, is actually downregulated according to the curated table.
ngene nuhemnnamen uberon ngene_s-umbnln name -
1 EGFR breast UBERON:(EGFR breast cancer
2 MR4A1 breast UBEROM:C NR4AL breast cancer
3 RHOA breast UBEROM:C RHOA breast cancer
4 CD24 breast UBEROM:0000310
Result 5 ECmM1 breast UBEROMN:0000310
(Iatest 6 CXCL13 breast UBEROM:0000310
version- 7 CCND1 breast UBERON:0000310
v2) 8 RET breast UBERON:0000310
5 MUC1 breast UBEROM:0000310
10 RABSA breast UBEROM:0000310
11 EPCAM breast UBEROM:0000310
12 UBQLN1 breast UBERON:0000310
13 ERBB2 breast UBEROM:0000310
ngene n uberonname n uberon ngene_sumbnl n name -
1 EGFR breast UBEROM:0000310 EGFR breast cancer
2 MET breast UBEROM:0000310 MET breast cancer
3 MYC breast UBEROM:0000310 MYC breast cancer
4/LPIN1 breast UBEROMN:0000310 LPIN1 breast cancer
5 RHOA breast UBERON:0000310 RHOA breast cancer
Result 6 CCND1 _ breast UBERON:0000310
(older-v1) 7 MUC1 breast UBERON:0000310
8 ERBB3 breast UBEROMN:0000310
9 ERBB2 breast UBEROM:0000310
10 AMACR breast UBEROM:0000310
11 50X2 breast UBERON:0000310
12 AMFR breast UBEROM:0000310
13 RACL breast UBEROMN:0000310
Improvem | Similar to Query 4, we observe that the latest version provides a smaller
ents over number of false positives (i.e., downregulated genes in the curated list that are
v1 shown as upregulated), as a result of the efficient triple unification approach.

Page 52 of 85

I n@D E D3.2 — Second Component Release

SQL SELECT distinct *
Q 5 FROM triples_fully linked v2
uery WHERE (predicate like 'Sbiomarker$'

or subject like 'Sbiomarker$' or object like '$biomarker%') and

(predicate like 'Scancer$'
o

or subject like 'Scancer$' or object like 'S%cancer%') and
polarity="'TRUE' and uberonname != 'tissue'

NL Find all cancer biomarkers from the literature.
equivalent

This is a simple query showcasing the information extraction capabilities of the
Explana- OpenDatalLinking component. We focus on finding all literature cases (derived
tion from triple extraction on Pubmed articles) that include the keywords “cancer”
and “biomarker” in the extracted triples.

PR P P Py - P o B owviee T - I S - [P

1 1978 27902750 TNF UBERON:0012 venous blood stress variables profile of anticwere biochemically assessed from venous blood of fifty ovarian cancer patients and twe _TRUE
2 794 25559835 TNF UBERON:0000 breast tnf polymorphisms could serve as useful predictive biomarkers for breast cancer risk an__TRUE
3 2815 21980040 CRYAB _ UBERON:0002 prostate gland lower cryab expression isa prognosti for ral types of cancer such as that of the prostate an__TRUE
4 2562 27644245 FABPS _UBERON:0000 lymph node fatty acid-binding protein 5 fak was found in previous study to biomarker __be a potential for lymph node metastasis of cervical ¢ TRUE
5 681 27644245 FABPS _UBERON:0002 lymph fatty acid-binding protein 5 fak was found in previous study to biomarker __be a potential for lymph node metastasis of cervical ¢ TRUE
6 1074 23803082 KLK3 __UBERON:0001 posterior communiciklk3 gene products like human are important biomarkers in the clinical diagnosis of prostate cancer pca TRUE
7 1411 27902750 TNF UBERON:0000 blood stress variables profile of infla were assessed from venous blood of fifty ovarian cancer patients and twe _TRUE
§ 2091 21980040 CRYAB _ UBERON:0002 prostate gland lower cryab expression s a prognosti for ral types of cancer such as that of the prostate ar__TRUE
5 519 27228733 S100A4 UBERON:0002 liver nuclear expression of the calci is a biomarker of increased invasi in iocarcinoma a prim: _TRUE
10 1887 25563194 XRCCL _ UBERON:000Z lung xrecl phism_acts a potential biomarker for lung cancer TRUE
11 2621 26416047 CCNDL _ UBERON:0000 breast cend mutations may serveas biomarkers for early diagnosis of breast cancer TRUE
12 622 26416047 CCND1 _ UBERON:0000 breast cend and cdkd mutations _may serve as biomarkers for early detection of breast cancer TRUE
Resu It 13 1672 17633075 AMACR _UBERON:0002 prostate gland expression of the alpha-methy has been as a ker for the diagnosis of prostate cani_TRUE
14 2802 21980040 CRYAB _ UBERON:0000 neck lower cryab expression is a prognosti for ral types of cancer such as that of the neck TRUE
(Iatest 15 1636 23098186 QSOX1 __ UBERON:0000 breast gsox1 could be posited as a new biomarker of good prognosis in breast cancer _ TRUE
16 3050 28196064 EGFR___UBERON:0000 breast egfr expression levels are key biomarkers for breast cancer patient response to__TRUE
VerSiOI’l- 17 384 29277780 MMP1 __UBERON:0002 lung the mmp1-1607 1g allele is a non-significant protective biomarker for _lung cancer in taiwan TRUE
18 1584 27902750 TNF UBERON:0000 blood stress variables profile of antidwere biochemically assessed from venous blood of fifty ovarian cancer patients and twe_TRUE
19 1574 21980040 CRYAB _ UBERON:0000 neck lower cryab expression is.a prognosti for several types of cancer such as that of the prostate an__TRUE
V2) 20 2564 26416047 CCND1 _ UBERON:0000 breast ccndi and cdkd mutations _ may serve as biomarkers for early diagnosis and detection of breasTRUE
21 2604 17683075 AMACR _UBERON:0002 prostate gland expression of the alpha-methy has been established as asensitive biomarker for the diagnosis of prostate ca_ TRUE
22 1022 27902750 TNF UBERON:0000 blood stress variables profile of antic were biochemically assessed from venous blood of fifty ovarian cancer patients and twe _TRUE
23 2366 21980040 CRYAB _ UBERON:0000 neck lower cryab expression isa prognosti for ral types of cancer such as that of the prostate an__TRUE
2 498 27328733 S100A4__ UBERON:0002 liver nuclear expression of the calci is a biomarker of increased i in aprim;__TRUE
25 2199 23303082 KIK3 __UBERON:0002 prostate gland kIk3 gene products like human are important biomarkers in the clinical diagnosis of prostate cancer pca TRUE
25 2943 27902750 TNF UBERON:0013 venous blood stress variables profile of anti¢were biochemically assessed from venous blood of fifty ovarian cancer patients and tweTRUE
27 2502 21930040 CRYAB _UBERON:0000 head Tower cryab expression isa prognosti for several types of cancer such as that of the prostate an__TRUE
28 1233 21980040 CRYAB _ UBERON:Q0Q7 craniocervical regiar lower cryab expression s a prognosti for ral types of cancer such as that of the prostate ar__TRUE
29 448 26707566 EGFR___ UBERON:0002 lung epidermal growth factor recep is a crudal biomarker for prediction of response to tyrosine kinase inhibitors ir_TRUE
30 538 28041942 PTN UBERON:0000 breast ptn could be considered as a potential biomarker for the presence of breast canc_TRUE
31 1109 28196064 EGFR___UBERON:0000 breast egfr expression levels are key biomarkers for breast cancer patient response to__TRUE
32 2343 27902750 TNF UBERON:0013 venous blood stress variables profile of inflal were biochemically assessed from venous blood of fifty ovarian cancer patients and twe _TRUE
& nome [subject
1 1076 26823785 CDKN1A UBERON:0000310 breast Both CDKN1A / p21 arepresented as possible candidates for breast cancer bic TRUE
3347 18668212 LEPR UBERON:0000310 breast Leptin evaluated the relationship among the leptin receptor TRUE
3 3189 25409685 POLQ UBERON:0000310 breast genetic variants be related to POLQ as new population biomarkers of 1 TRUE
4 294 22446113 EGFR UBERON:0002107 liver EGFR is in biomarker _patients of liver cancer in those with expo: _ TRUE
Resu It 5 1532 27644245 FABPS __ UBEROI lymph not protein 5 FABPS was found in our previous study to be a potential bior _ TRUE
6 1824 24747263 AFP UBERON:0000178 blood exercise frequency improves what cancer-related biomarkers such as cal_ TRUE
(ol der_v1) 7 2016 22899247 ERBB2 _ UBERON:0000310 breast product protein is a key biomarker for breast cancer The ERBE TRUE.
8 2666 23567490 CCND1 UBERON:0001155 colon prospective trials are warranted CCND1rs9344 G A may be a predictive and\ TRUE
3 1533 27644245 FABPS UBERON:0002391 lymph protein 5 FABPS was found in our previous study to be a potential bior TRUE
10 2634 21980040 CRYAB _ UBERO! head lack or lower CRYAB expression_is a prognostic biomarker for several types of _TRUE
11 2682 28870920 MMP7 __ UBERON:0000310 breast GG genotype at MMP7 A-181G__may serve as a biomarker for early detection and prec_ TRUE
12 1528 27709523 S100A6 UBERON:0002043 lung serum levels of 5100A6 were suggested as a novel biomarker for various inflammat _ TRUE

A significant increase in the number of extractions showcases the upgraded
capabilities of the latest triple extraction approach compared to v1. Moreover,
the improvements introduced in the OIE process lead to “cleaner” predicates
(i.e., that contain less non-informative context).

Improve-
ments
over v1

R&I Use Case

SQL SELECT acronym, objective

FROM projects

Query1 WHERE unics_id IN

(SELECT neighbour FROM projects

INNER JOIN project neighbours

ON projects.unics id = project neighbours.project
WHERE acronym = 'THINFRAME')

NL Find 3 closest contextual neighbours of the THINFRAME EU-funded project and
equivalent | their descriptions.

As described in D3.1, in the context of the R&l Use Case, we leverage the
Explana- natural language text of each project stored in the SIRIS database to find
tion semantic neighbours of the existing CORDIS projects, based on their vector
representation similarities. We then enrich the SIRIS database with the

Page 53 of 85

INGDE

discovered neighbour pairs. This simple query aims at finding the 3 most similar
projects to a given one, based on their contextual similarity.

Note that while this approach is similar to the by-neighbour operator
introduced in Section 2.1.4, the current approach focuses on the semantic
similarity of unstructured text (expressed in the form of word/sentence
embeddings). On the contrary, the by-neighbour operator is relevant only for
ordered attributes and thus cannot be leveraged for NL-text.

Data Output Explain Messages Notifications
LSS T
Result 1 PORTAFACT PU foam and EPS panel construction systems are considered to be the best materials used in the pre-cast industry, given their high insulation performance, the reduced wej
2 SOLARGAIN Buildings are a major end-user of European energy, representing 40% of energy consumption and 1,800 million tonnes of CO2 emissions. Improved energy efficiency within
3 NANOINSULATE NANOQINSULATE will develop durable, robust, cost-effective opague and transparent vacuum insulation panels (VIPs) incorporating new nanotechnology-based core materi
sSQL SELECT acronym, objective
FROM projects
Query 2 WHERE unics_id IN
(SELECT neighbour FROM projects
INNER JOIN project neighbours
ON projects.unics_id = project neighbours.project
WHERE acronym = 'SOLUS' AND framework program='H2020')
NL Find closest contextual neighbours of the SOLUS H2020 project and their
equivalent | descriptions.
This is similar to the above query; we are searching for contextual neighbours of
Explana- a project. However, now we set the additional condition that the mentioned
tion project is part of the H2020 framework. This aims at discarding any potential
synonyms from different frameworks that could influence the results.
Data Output Explain Messages Notifications
a & o
Resu It 1 LUCA This is a trans-disciplinary project that joins endocrinologists (“end-users”), radiologists (“end-users”), physicists who are
2 MAMMOCARE Breast cancer is the most frequent cancer among women and ene of the leading causes of cancer-related mortality and ¢
3 SHINE By only considering the United States of America and Europe, 1 in 12 women is affected by Breast cancer (BC). It is the la
SQL SELECT acronym, title, objective, framework program
Q 3 FROM projects WHERE unics id IN
uery (SELECT neighbour FROM projects
INNER JOIN project neighbours
ON projects.unics_id = project neighbours.project
WHERE objective LIKE 'S$urban transport%'
ORDER BY distance ASC LIMIT 5)
NL Show the acronym, title, objective and framework of the 5 contextually closest
equivalent | projects to urban transport.
In this query we do not directly search for contextual neighbours of a particular
project; instead we focus our search on a specific topic/category (e.g., urban
Explana transport) and search for neighbours that share the same topic. Note that, while
tioﬁ this query implies that there must be at least one project containing the phrase

“urban transport” in its objective description, the neighbours identified for that
project do not necessarily include the same text. This showcases the added
value of vector representations for NL-text, in the context of semantic similarity.

Page 54 of 85

D3.2 — Second Component Release

INGDE

D3.2 — Second Component Release

Data Output Explain Messages Notifications
. ?::nym a :!:: a (D::dive a |rr;;[maw::rk_pmgram q
1 SWARM Demonstration of Small 4-Wheel fuel c... This project will establish a demaonstration fleet of small passenger vehicles tha.. FP7
Result 2 WeSmartPark Giving Drivers Access to Conventional .. WeSmartPark represents a novel technology suite that allows utilizing existing .. H2020
3 CONCEPT COMNductive fast Charge system for El.. Heliox, a company specialized in switch mode power technology, is developing .. H2020
4 USharePark USharePark: smart secUres system to USharePark is a peer-to-peer (P2P) smart parking solution intended to optimize H2020
5 Matrix Charging Matrix Charging: Novel, automated ch.. Over the next 15 years continuing growth of urbanisation & sprawl will increase . H2020
SQL SELECT acronym, title, ec call
Q 4 FROM projects
uery WHERE framework program='H2020' AND unics_id IN
(SELECT neighbour FROM projects
INNER JOIN project neighbours
ON projects.unics_id = project neighbours.project
WHERE acronym = 'ZEOSOL')
NL Find the closest contextual neighbours of the ZEOSOL project that are under
equivalent | the H2020 framework and show their acronym, title and call topic.
Exolana In this query we are searching for similar projects of ZEOSOL, but we are
tioﬁ limiting the results on neighbours that belong only to the H2020 framework. We
are also querying for additional information (acronym, title, and topic).
Uata UUTPUT EXpIAin Messages NOTTICATONS
acronym title ec_call
]] &
text text text
Result 4 - . R ;
1 | SWS-HEATING Development and Validation of an Innovative Solar Comp... H2020-LCE-2017-RES-RIA-TwoStage
2 Solar QUEST QUalitative Electricity STorage for Solar energy H2020-SMEInst-2018-2020-2
SQL SELECT unics_id, acronym, title, start year, total cost
Q 5 FROM projects
uery WHERE framework program='H2020' AND start year > 2018 AND
total cost<8000000 AND unics id IN
(SELECT neighbour FROM projects
INNER JOIN project neighbours
ON projects.unics id = project neighbours.project
WHERE acronym = 'GOLIATH'
ORDER BY distance ASC)
NL Find the closest contextual neighbours of the GOLIATH project that are under
equivalent the H2020 framework, started later than 2018 and have a total cost less than
q 8M, and show their ID, acronym, title, start year, and cost.
This is a more complex query , as we are searching for similar projects to
Explana- GOLIATH based on multiple conditions. Consequently, the results are limited
tion (from the 3 contextual neighbours extracted for each project by
OpenDatalLinking, only one fulfills every condition).
Data Output Explain Messages Notifications
unics_id acronym P title start_year total_cost &
Result 4 [PKlinteger T text o text integer double precision
1 892702 EDCMET Metabolic effects of Endocrine Disrupting Chemicals: n... 2019 5980408.75

Page 55 of 85

I n@D E D3.2 — Second Component Release

3 INODE-SPARQL 1.0 In AcTiON

3.1 OpenDataDialog

3.1.2 NL-to-SPARQL: Translating Natural Language Questions to SPARQL

One of the important advantages of making data available in a knowledge graph, which can
then be queried via SPARQL, is that the knowledge graph itself, as well as the corresponding
domain ontology, can make use of a terminology closer to the user’s natural language. This
can greatly benefit the process of searching and exploring the data, in particular through
natural language questions. In the case of a virtual knowledge graph, these benefits do not
need to come at the cost of changing the original data sources (for example, the relational
databases of CORDIS and SDSS), given that these can be kept unmodified, through the use of
relational-to-RDF mappings. In the following, we provide a few concrete examples to
illustrate the benefits of question answering over the virtual knowledge graphs of CORDIS
and SDSS with Bio-SODA.

3.1.2.1 Querying CORDIS in NL with Bio-SODA

The CORDIS database can be easily queried in natural language, for example in order to look
for all projects of a certain principal investigator of interest or all members of a given project.
A simple example is shown in Figure 3.1. Further examples are available on the CORDIS demo
page for Bio-SODA.

IERC projects whose principal investigator is Michael Smith]

Keyword Query: ERC projects whose principal investigator is Michael Smith
Selected Matches (one example per class-property pair, limited to top 10):

principal investigator ERC project Michael Smith
http://unics.cloud/ontology#principalInvestigator http://unics.cloud/ontology#ERC-Project http://unics.cloud/ontology#Person-1211644

principal investigator

http://unics.cloud/ontology#principalIlnvestigator: ObjectProperty: label ("principal investigator"), SPARQL
ERC project

http://unics.cloud/ontology#ERC-Project: Class: label ("ERC project"), SPARQL

Michael Smith

http://unics.cloud/ontology#Person-1211644: Person: fullName ("Michael Smith"), SPARQL

Keyword: principal investigator Match: http://unics.cloud/ontology#principalinvestigator
Keyword: ERC project Match: http://unics.cloud/ontology#ERC-Project
Keyword: Michael Smith [Will be matched through a SPARQL filter on the class <http://unics.cloud/ontology#Person> property <http://unics.cloud/ontology#fullName>]

SPARQL query:
SELECT DISTINCT ?ercproject ?ercproject_title ?person ?person_fullname WHERE {

?ercproject a <http://unics.cloud/ontology#ERC-Project>.

?ercproject <http://unics.cloud/ontology#principalInvestigator> ?person.
?ercproject <http://unics.cloud/ontology#title> ?ercproject_title.
?person <http://unics.cloud/ontology#fullName> ?person_fullname.
FILTER (contains(lcase(str(?person_fullname)), "michael smith"))

>

LIMIT 10

?ercproject ?ercproject_title ?person ?person_fullname
http://unics.cloud/ontology#Project-167219 A European Approach to Conflict Resolution? Institutional Learning and the ESDP http://unics.cloud/ontology#Person-1211644 Michael Smith

Figure 3.1: An example natural language question over the CORDIS knowledge graph
using Bio-SODA.

Page 56 of 85

I n@D E D3.2 — Second Component Release

3.1.2.2 Reasoning over the CORDIS Ontology

Although the CORDIS ontology is quite simple, it still presents hierarchies that can be
exploited by a reasoner. For instance, consider the following query in natural language.

“titles of erc projects with coordinators and their geographic location”

The geographic locations in CORDIS conform to the EU classification based on the NUTS
classification. The NUTS classification?® (Nomenclature of territorial units for statistics) is a
hierarchical system for dividing up the economic territory of the EU.

Specifically, the CORDIS ontology presents the following structure:

v-- W <http://unics.cloud/ontology#nuts=

. - mH <http://unics.cloud/ontology#nuts3=
— M <http:/funics.cloud/ontology#nuts2=
— M <http:/funics.cloud/ontology#nutsl=

Since there are three territorial units, without reasoning a user should explicitly ask for each
of them. That is, the query above should be formulated as:

“titles of erc projects with coordinators and their NUTS 1 location or NUTS 2 location or NUTS
3 location”

The reasoner relieves the user from such a burden, and the query can simply be formulated
according to the hierarchy above as:

“titles of erc projects with coordinators and their NUTS location”.

These are some of the reasoning capabilities that are currently supported by Ontop. These
capabilities, as well as additional ones illustrated next, will also be integrated with Bio-SODA
in the next release.

3.1.2.3 Querying SDSS in NL with Bio-SODA

In the lack of a domain ontology, the original relational database of SDSS cannot be easily
searched in natural language, given that it requires understanding the low-level structure of
the database, for example, that the attributes “ra” and “dec”, refer to “right ascension” and
“declination”, respectively. Furthermore, one possible common use case, querying for
photometrically observed galaxies, requires the user to know that a galaxy is defined by the
numerical value 3 for the attribute “type” of the table “PhotoObj”. However, in the
virtual knowledge graph of SDSS, made accessible through Ontop and realized through the
OpenDatalinking services, this semantic information can be easily made explicit, for
example, through rdfs:labels, allowing the user to search by the attribute name in a
much more convenient manner. Therefore, Bio-SODA can easily answer a question
formulated in natural language, such as “What are all the photo galaxies with right ascension
> 100 and declination < 100?”. The process is illustrated in Figure 3.2 and Figure 3.3. Note
that the equivalent keyword query directly over the relational database would have to be
formulated as “photoobj type = 3 ra > 100 dec < 100"

% https://ec.europa.eu/eurostat/web/nuts/background

Page 57 of 85

I n@D E D3.2 — Second Component Release

[what are all the photo galaxies with right ascension > 100 and declination < 100?]

Keyword Query: what are all the photo galaxies with right ascension > 100 and declination < 100?
Selected Matches (one example per class-property pair, limited to top 5):

right ascension declination photo galaxies

http://www.semanticweb.org/skyserver/right_ascension http://www.semanticweb.org/skyserver/declination http://www.semanticweb.org/skyserver/PhotoGalaxy

right ascension

http://www.semanticweb.org/skyserver/right_ascension: DatatypeProperty: uri ("right_ascension"), SPARQL
declination

http://www.semanticweb.org/skyserver/declination: DatatypeProperty: uri ("declination"), SPARQL

photo galaxies

http://www.semanticweb.org/skyserver/PhotoGalaxy: Class: uri ("PhotoGalaxy"), SPARQL

100 (numerical filter on property)

http://www.semanticweb.org/skyserver/declination: DatatypeProperty: uri ("declination"), SPARQL
http://www.semanticweb.org/skyserver/right_ascension: DatatypeProperty: uri ("right_ascension"), SPARQL

Figure 3.2: An example natural language question and candidate matches over the SDSS
knowledge graph using Bio-SODA.

Keyword: right ascension Match: http://www.semanticweb.org/skyserver/right_ascension
Keyword: declination Match: http://www.semanticweb.org/skyserver/declination
Keyword: photo galaxies Match: http://www.semanticweb.org/skyserver/PhotoGalaxy

SPARQL query:
SELECT DISTINCT ?photogalaxy ?photogalaxy_declination ?photogalaxy_right_ascension WHERE {

?photogalaxy a <http://www.semanticweb.org/skyserver/PhotoGalaxy>.

?photogalaxy <http://www.semanticweb.org/skyserver/right_ascension> ?photogalaxy_right_ascension.
?photogalaxy <http://www.semanticweb.org/skyserver/declination> ?photogalaxy_declination.

FILTER (?photogalaxy_declination < 100)

FILTER (?photogalaxy_right_ascension > 100)

¥
LIMIT 100
?photogalaxy ?photogalaxy_declination ?photogalaxy_right_ascension

http://www.semanticweb.org/skyserver/photoobj/objid=1237651538724913417 53.9425086434111023 240.293028035850995
http://www.semanticweb.org/skyserver/photoobj/objid=1237651538725307086 53.2549480158233024 241.181820051768995
http://www.semanticweb.org/skyserver/photoobj/objid=1237651538726092947 51.8962555655258981 242.899020917994989
http://www.semanticweb.org/skyserver/photoobj/objid=1237651539238846553 58.1171620443342007 136.130439099716
http://www.semanticweb.org/skyserver/photoobj/objid=1237651539238912177 58.2576259547793995 136.040207912815987

Figure 3.3. Corresponding SPARQL query and results table for the natural language question
over the SDSS knowledge graph using Bio-SODA.

Further higher-level concepts have also been made available in the SDSS ontology, in order to
allow users to easily search for more complex astrophysical objects with certain properties of
interest, such as star forming galaxies with a specific velocity dispersion or starburst galaxies
with a particular redshift. An example is shown in Figure 3.4.

Page 58 of 85

I n@D E D3.2 — Second Component Release

show all star burst galaxies with velocity dispersion > 800 l

Keyword Query: show all star burst galaxies with velocity dispersion > 800
Selected Matches (one example per class-property pair, limited to top 5):

velocity dispersion star burst galaxies

http://www.semanticweb.org/skyserver/Spectroscopy#velocity_dispersion . .
http://www.semanticweb.org/skyserver/Spectroscopy#velocity_dispersion_error http://www.semanticweb.org/skyserver/StarBurstGalaxy
velocity dispersion
http://www.semanticweb.org/skyserver/Spectroscopy#velocity_dispersion: DatatypeProperty: uri ("velocity_dispersion"), SPARQL
http://www.semanticweb.org/skyserver/Spectroscopy#velocity_dispersion_error: DatatypeProperty: uri ("velocity_dispersion_error"),
star burst galaxies

http://www.semanticweb.org/skyserver/StarBurstGalaxy: Class: uri ("StarBurstGalaxy"), SPARQL

800 (numerical filter on property)

http://www.semanticweb.org/skyserver/Spectroscopy#velocity_dispersion: DatatypeProperty: uri ("velocity_dispersion"), SPARQL
http://www.semanticweb.org/skyserver/Spectroscopy#velocity_dispersion_error: DatatypeProperty: uri ("velocity_dispersion_error"),

Keyword: velocity dispersion Match: http://www.semanticweb.org/skyserver/Spectroscopy#velocity_dispersion
Keyword: star burst galaxies Match: http://www.semanticweb.org/skyserver/StarBurstGalaxy

SPARQL query:
SELECT DISTINCT ?starburstgalaxy ?starburstgalaxy_velocity_dispersion WHERE {

?starburstgalaxy a <http://www.semanticweb.org/skyserver/StarBurstGalaxy>.
?starburstgalaxy <http://www.semanticweb.org/skyserver/Spectroscopy#velocity_dispersion> ?starburstgalaxy_velocity_dispersion.
FILTER (?starburstgalaxy_velocity_dispersion > 800)

¥
LIMIT 100

?starburstgalaxy ?starburstgalaxy_velocity_dispersion
http://www.semanticweb.org/skyserver/specobj/specobjid=5378668592073297920 850
http://www.semanticweb.org/skyserver/specobj/specobjid=5468713096897122304 850
http://www.semanticweb.org/skyserver/specobj/specobjid=6171291136004739072 850
http://www.semanticweb.org/skyserver/specobj/specobjid=6170048688167342080 850
http://www.semanticweb.org/skyserver/specobj/specobjid=3143600302393944064 805.9375
http://www.semanticweb.org/skyserver/specobj/specobjid=6644059696411201536 850
http://www.semanticweb.org/skyserver/specobj/specobjid=2423035070810974208 835.973816
http://www.semanticweb.org/skyserver/specobj/specobjid=6776924132343042048 850

Figure 3.4: Example natural language question targeting starburst galaxies in the SDSS
knowledge graph using Bio-SODA.

3.1.2.4 Reasoning over the SDSS Ontology

The SDSS database provides two main catalogs of objects: those coming from photometric
observations done with cameras, and those coming from spectrometric observations done
with a multi object, fiber spectroscopic instrument. These two categories bring different
kinds of information about the objects in the sky, with some overlapping. Consider again the

query
“What are all the photo galaxies with right ascension > 100 and declination < 100?”

and let us slightly modify it, by not only restricting ourselves to photometric observations
(photo galaxies), but wanting to consider all the galaxies. One option might then be the

query:
“What are all the photo and spec galaxies with right ascension > 100 and declination < 100?”

Observe that this solution is not optimal, as it requires the users to be aware of the fact that
there exist two different catalogs, and that they need to explicitly ask for both.

Page 59 of 85

I n@D E D3.2 — Second Component Release

Thanks to reasoning, however, we have a better alternative. The SDSS ontology we devised
provides a convenient hierarchy specifying that both photo and spec galaxies represent, in
fact, galaxies:

1' -c:htt';:::;’;ﬂrmw.Semanticweb.ora;’skgfaewermalaxy:-
L <http://www.semanticweb.org/skyserver/PhotoGalaxy=
B <http://www.semanticweb.org/skyserver/SpecGalaxy>

e b Thaasas cmrmamtisownb saralclae ananriC alemaclima—

Hence, why not to ask for galaxies directly, ignoring the catalog they come from?
“What are all the galaxies with right ascension > 100 and declination < 100?”

The reasoner implemented in Ontop will automatically translate such a query into a query
retrieving both photo galaxies and spec galaxies, relieving the final user from that burden.

3.1.3 Enabling SPARQL Queries over OncoMX

3.1.3.1 Enriching OncoMX with Ontologies using Ontop

Originally, the OncoMX datasets are composed of semi-structured data related to cancer
biomarkers. Based on them, we built a relational database with corresponding relational
schema. Moreover, we took advantage of the Ontop tool over the created OncoMX relational
database to integrate external RDF-based ontologies. For example, nucleotides and amino
acids are simply stored in the OncoMX relational database as IUPAC (International Union of
Pure and Applied Chemistry) codes such as “A” to represent the Adenine nucleobase. In
addition to this, “A” is also a code for the amino acid Alanine. We solve this ambiguity by
enriching the OncoMX data with the Chemical Entities of Biological Interest (ChEBI)
vocabulary®. This enables us to retrieve more information that is not in the original OncoMX
datasets, such as the nucleobase name, its synonyms, and chemical formula.

In addition, we use the following vocabularies and ontologies to enrich the OncoMX dataset:

Experimental Factor Ontology (EFO)*’

National Cancer Institute Thesaurus (NCIt) OBO edition®®
Uber-anatomy ontology (UBERON)*
Ontology for Biomedical Investigations (OBI
OPMI: Ontology of Precision Medicine and Investigation®!

)30

% de Matos, P., Alcantara, R., Dekker, A., Ennis, M., Hastings, J., Haug, K., Spiteri, |., Turner, S., & Steinbeck, C. (2010). Chemical
Entities of Biological Interest: an update. Nucleic acids research, 38(Database issue), D249-D254.
https://doi.org/10.1093/nar/gkp886

2 Malone J, Holloway E, Adamusiak T, Kapushesky M, Zheng J, Kolesnikov N, Zhukova A, Brazma A, Parkinson H: Modeling
Sample Variables with an Experimental Factor Ontology. Bioinformatics 2010, 26(8):1112-1118

28 J/ei NCLT / g

2 Mungall, C.J., Torniai, C., Gkoutos, G.V. et al. Uberon, an integrative multi-species anatomy ontology.Genome Biol 13, R5
(2012). https://doi.org/10.1186/gh-2012-13-1-r5

30 Bandrowski, A., Brinkman, R., Brochhausen, M., Brush, M. H., Bug, B., Chibucos, M. C., Clancy, K., Courtot, M., Derom, D.,
Dumontier, M., Fan, L., Fostel, J., Fragoso, G., Gibson, F., Gonzalez-Beltran, A., Haendel, M. A., He, Y., Heiskanen, M.,
Hernandez-Boussard, T., Jensen, M., ... Zheng, J. (2016). The Ontology for Biomedical Investigations. PloS one, 11(4), e0154556.
https://doi.org/10.1371/journal.pone.0154556

3 He Y, Ong E, Schaub J, Dowd F, O’Toole JF, Siapos A, Reich C, Seager S, Wan L, Yu H, Zheng J, Stoeckert C, Yang X, Yang S, Steck
B, Park C, Barisoni L, Kretzler M, Himmelfarb J, lyengar R, Mooney SD, for the Kidney Precision Medicine Project Consortium.
OPMI: the Ontology of Precision Medicine and Investigation and its support for clinical data and metadata representation and

Page 60 of 85

https://drive.google.com/file/d/1TN3jH4hoh40Saa8adlR_TocREGTNPVlC/view
https://github.com/NCI-Thesaurus/thesaurus-obo-edition

I nﬁD E D3.2 — Second Component Release

e Sequence types and features ontology (SO)*
e Semantic Science Integrated Ontology (S0)**

The enrichment is done by manually implementing Ontop mappings such as the one shown
in Figure 3.5. In this mapping, we can interpret the “SELECT” projections as the body of a
Horn-like rule that is written with the SQL syntax. This SELECT query, when executed over the
OncoMX DB, retrieves the information needed to derive the rule head. In this case, the rule
head is actually an RDF graph pattern that is structured based on the cancer biomarker
ontology we are developing as an RDF data schema for OncoMX data. This ontology reuses
the previously mentioned vocabularies among others, for example, FALDO* for describing
the nucleotide and amino acid locations, as part of its terminological and assertion boxes.

sequence_alteration

oncomx:SEQ_ALT_{id}-{peptide_id} a oba:SO_0001059 ; faldo:reference <https://identifiers.org/ensembl:{peptide_id}> ; faldo:location
oncomx:LOCATION_PROT _{id}-{peptide_pos} ; :alteredFrom obo:{ref_aa}, sioj{ref_aa_SIO}, obo:{ref_aa_X} ; :alteredTo obo:{alt_aa}, sic:{alt_aa_SIO
, obo:{alt_aa_X} . oncomx:LOCATION_PROT_{id}-{peptide_pos} a faldo:ExactPosition ; faldo:position {peptide_posiraxsdiinteger .
oncomx:SEQ_ALT_{id}={uniprotkb_ac} a obo:50_0001059 ; faldo:reference <http://purl.uniprot.org/uniprot/{uniprotkb_ac}> ; faldo:location
oncomx:LOCATION_PROT _{id}-{aa_pos_uniprotkb} ; :alteredFrom obo:{ref_aa} , sio:{ref_aa_SI0}, obo:{ref_aa_X};:alteredTo obo:{alt_aa},
sio:falt_aa_SI0} , obo{alt_aa_X} . oncomx:LOCATION_PROT_{id}-{aa_pos_uniprotkb} a faldo:ExactPosition ; faldo:position
{aa_pos_uniprotkb}AAxsd:integer . oncomx:SEQ_ALT_{id}-{gene_symbol} a obo:50_0001059 ; faldoreference
<https://identifiers.org/hgnc.symbol:{gene_symbol}> ; faldodlocation oncomx:LOCATION_GENE_{id}-{cds_pos} ; :alteredFrom obo:{ref_nt} ;
:alteredTo obo-{alt_nt} . oncomx:LOCATION_GENE_{id}-{gene_symbol} a faldo:ExactPosition ; faldo:position {cds_pos}AAxsd:integer .

SELECT id, CASE ref_nt WHEN 'A' THEN 'CHEBI_l6708°' WHEN 'C' THEN 'CHEBI_16040' WHEN 'G' THEN 'CHEBI_16235' WHEN "T' THEN
'CHEBI_17821' WHEN 'U' THEN 'CHEBI_17568' END AS ref_nt, CASE alt_nt WHEN 'A' THEN 'CHEBI_16708' WHEN 'C' THEN
‘CHEBI_16040' WHEN 'G' THEN 'CHEBI_16235' WHEN 'T' THEN 'CHEBI_17821' WHEN 'U' THEN 'CHEBI_17568' END AS alt_nt, cds_pos,
aa_pos_uniprotkb, CASE ref _aa WHEN 'A' THEN 'CHEBI_16449' WHEN 'C' THEN 'CHEBI_15356' WHEN 'D' THEN 'CHEBI_22660' WHEN 'E’
THEN 'CHEBI_18237' WHEN 'F' THEN 'CHEBI_28044' WHEN 'G' THEN 'CHEBI_15428' WHEN 'H' THEN 'CHEBI_15971' WHEN 'I' THEN
‘CHEBI_17191' WHEN 'K' THEN 'CHEBI_25094' WHEN ‘L' THEN 'CHEBI_25017°' WHEN 'M' THEN 'CHEBI_16811' WHEN 'N' THEN
'CHEBI_22653' WHEN 'P' THEN 'CHEBI_17203' WHEN 'Q' THEN 'CHEBI_18050' WHEN 'R' THEN 'CHEBI_16467' WHEN 'S' THEN
'CHEBI_17115' WHEN 'T' THEN 'CHEBI_16857' WHEN 'V' THEN 'CHEBI_16414" WHEN 'W' THEN 'CHEBI_27897' WHEN 'Y' THEN
‘CHEBI_18186' END AS ref_aa, CASE ref_aa WHEN '*' THEN 'SIO_010448' END AS ref aa SIO, CASE ref aa WHEN 'X' THEN
'ANY_CODON' END AS ref aa_X,CASE alt_aa WHEN 'A' THENW 'CHEBI_16449' WHEN 'C' THEN 'CHEBI_15356' WHEN D' THEN
'CHEBI_22660' WHEN 'E' THEN 'CHEBI_18237' WHEN 'F' THEN 'CHEBI_28044' WHEN 'G' THEN 'CHEBI_15428' WHEN 'H' THEN
'CHEBI_15971' WHEN 'I' THEN 'CHEBI_17191' WHEN 'K' THEN 'CHEBI_25094°' WHEN 'L' THEN 'CHEBI_25017' WHEN 'M' THEN
'CHEBI_16811' WHEN 'N' THEN 'CHEBI_22653' WHEN 'P' THENW 'CHEBI_17203' WHEN 'Q' THEN 'CHEBI_18050' WHEN 'R’ THEN
'CHEBI_16467' WHEN 'S' THEN 'CHEBI_17115° WHEN 'T' THEN 'CHEBI_16857' WHEN 'V' THEN 'CHEBI_16414' WHEN 'W' THEN
'CHEBI_27897' WHEN 'Y' THEN 'CHEBI_18186°' END AS alt_aa, CASE alt _aa WHEN '~' THEN 'SIO_010448' END AS alt_aa SIO, CASE
alt_aa WHEN 'X° THEN 'ANY CODON' END AS alt_aa X, peptide pos, mutation freq, data source, doid, peptide_id,

dm.ensembl transcript_id, mp.uniprotkb ac, gene_symbol FROM disease mutation as dm join map_protein disease mutation as mp on
mp.ensembl transcript_id = dm.ensembl transcript_id left join xref gene_uniprot as hugo on hugo.uniprotkb_ac=mp.uniprotkb ac

Figure 3.5: An Ontop mapping illustrating how nucleotides and amino acid codes are mapped
into the Chemical Entities of Biological Interest (ChEBI) vocabulary terms.

3.1.3.2 Reasoning over the OncoMX Ontology

Another added value of accessing the OncoMX data via ontologies with Ontop is the fact of
applying reasoning such as subsumption. This contributes to simplify the query writing and
knowledge discovery.

For example, let us consider the NL question (Q): What are the genomic biomarkers for
breast cancer? In the OncoMX relational database, there is no information about the fact
that all gene and genetic biomarkers are indeed genomic biomarkers. Therefore, without this
information, the response of this question will not be complete, and solely biomarkers

analysis. The 10th International Conference on Biomedical Ontology (ICBO-2019), July 30 - August 2, 2019, Buffalo, NY, USA.
10-page full length article.

32 Mungall CJ, Batchelor C, Eilbeck K (Feb 2011). "Evolution of the Sequence Ontology terms and relationships". Journal of
Biomedical Informatics. 44 (1): 87-93. doi:10.1016/].jbi.2010.03.002.

33 Dumontier, M., Baker, C.J., Baran, J. et al. The Semantic Science Integrated Ontology (SIO) for biomedical research and
knowledge discovery. J Biomed Semant 5, 14 (2014). https://doi.org/10.1186/2041-1480-5-14

34 Bolleman, J.T., Mungall, C.J., Strozzi, F. et al. FALDO: a semantic standard for describing the location of nucleotide and protein
feature annotation. J Biomed Semant 7, 39 (2016). https://doi.org/10.1186/s13326-016-0067-z

Page 61 of 85

https://drive.google.com/file/d/1TN3jH4hoh40Saa8adlR_TocREGTNPVlC/view

D3.2 — Second Component Release

INGDE

explicitly annotated with the “Genomic” tag are retrieved by excluding those with either
“Gene” or “Genetic” tags.

Figure 3.6 shows a portion of the OncoMX relational data schema about biomarkers. As a
result, to retrieve all biomarkers from the OncoMX relational DB the question would need to
be rewritten to explicitly include the genomic biomarker subtypes: “Genetic” and “Gene”.
This results in the following expanded question (EQ): “What are the genomic, genetic and
gene biomarkers for breast cancer?”.

An example of a corresponding SQL query for the expanded question (EQ) is depicted as
follows:

SELECT gene symbol, biomarker description
FROM biomarker AS b JOIN
biomarker edrn AS edrn ON b.id =
anatomical entity AS anat ON anat.id =
WHERE anat.name = 'breast' AND
biomarker type IN ('Genomic',

edrn.id JOIN
edrn.uberon anatomical id

'Gene', 'Genetic')

+
| disease v

i INT{10)
» name VARCHAR(B0) |,
L3

"] cancer_tissue v
"] biomarker_article v _ anatomical_entity v doid INT(10)
biomarker_internal_id VARCHAR(10) id VARCHAR(20) uberon_anatomical_id VARCHAR(20)
enicl VARGHAR(15) name VARCHAR(255) >
> description TEXT
| 3
.
¥ T —_| biomarker_edrn v
] biomarker L | id VARCGHAR(10)
id VARCHAR(10) I » ga_state VARCHAR(12)
gena_symbol VARCHAR(255) | @ ————— —I= < biomarker_title VARCHAR(300)
| biomarker_alias v) .
biomarker_dascription TEXT » biomarker_type VARCHAR(30)

biomarker_internal_id VARCHAR(10}
alias VARCHAR(255)

| 2

biomarker_id VARCHAR(50)

»test_is_a_panel TINYINT(1)
| 4

@ uberon_anatomical_id VARCHAR(20)
phase VARCHAR(20)

| 2

v
| BEF INSERT tg_biomarker_edrn_insert |

Figure 3.6: A portion of the OncoMX relational data schema for structuring biomarker related
data.

Based on the latest OncoMX data, on the one hand, a direct translation of the (Q) question
to SQL only retrieves one result: the CDH1 gene as a genomic biomarker, no subtypes are
considered. On the other hand, by considering an ontological approach with Ontop over the
OncoMX relational database, we are able to fetch four biomarkers in total (i.e., CDH1,
MMP10, STOM, MYC genes) where three of them are explicitly defined as gene biomarkers,
that are also genomic biomarkers. This is only possible because Ontop infers that the

Page 62 of 85

I nE)D E D3.2 — Second Component Release

instances of gene biomarkers are genomic biomarkers too. Figure 3.7 exemplifies a
corresponding SPARQL query translated from the question (Q).

SPARQL query editor:

M=
PREFIX : <http://purl.org/cbio/> :
PREFIX rdf: <http:/ /www.w3.org/1999/02 /22 -rdf-syntax-ns#> hlon'!arker (CHEBI:59163)
PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#> hlomark_er panel
PREFIX dc: <http://purl.org/dc/elements/1.1/> Eancer h'f’“‘?rk“
PREFIX obo: <http://purl.obolibrary.orgfobo/> epigenetic biomarker
genomic biomarker
SELECT ?name ?description { gene biomarker
?biomarker a :GenomicBiomarker; genetic t_'“’"!"ark“
rdfs:label 7name; metabolomic biomarker
dc:description ?description;
sindicate / obo:RO_0001025 ?organ. #locatedIn
Torgan rdfs:label 'breast’ . }
Execution time: 1.271 sec - Number of rows retrieve... Show: All Shor... |[*7| Attach Prefixes (& Execute E Save Changes

SPARCL results SOL Translation
name description

"MMPLO"AAxsd:s... "From NCEBI Gene: Proteins of the matrix metalloproteinase (MMP) family are involved in the breakdown of extracellular m...
“"COH1 "~ Axsd:str... "From NCBI Gene: This gene is a classical cadherin from the cadherin superfamily. The encoded protein is a calcium dep...
"STOMAaxsdistr... "STOM, or stomatin, is an integral membrane protein located in the cell membrane of red blood cells and other cell types...
"MYC"Arxsd:string “The oncogenic protein MYC, previously known as ¢-MYC, is a multifunctional, nuclear phasphoprotein that plays a role in...

Figure 3.7: Ontop SPARQL query editor in Protege. It illustrates the corresponding SPARQL
query and answers for the question: What are the genomic biomarkers for breast cancer? The
green box on the top right of this figure shows a portion of the ontology used, stating that
gene and genetic biomarkers (subclasses) are also genomic biomarkers (superclass). Based
on this portion of the ontology, thanks to the Ontop reasoner, the MMP10, STOM, MYC gene
biomarkers are also retrieved as a genomic biomarker, rather than solely CDH1.

3.1.3.3 Querying OncoMX with SPARQL

Table 3.1 depicts three questions, their corresponding SPARQL queries as part of our 11
guery test catalog, and their number of results along with their execution time.

Question SPARQL query Results
What are all SELECT * { Retrieves: 43 results in ~22 seconds
cancer types in ?doid a efo:EFO_0000408. doid name id
) - <http://purl.obolibrary.org/obo/DOID_119> ‘vaginal cance... “119"
the database? #disease <http://purl.obolibrary.orgfobo/DOID_169> “neuroendocri... "169"
?dOId rdfs:label ?name; <hrtp:ffpurl.obolibrarv.orgfobofDOID:184> "bone cancer”... "184"

<http: //purl.obolibrary.org/obo/DOID_219> “colon cancer”... “219"
terms:identifier ?id.}

What are the SELECT ?cancer { Retrieves: 8 results in ~11 seconds
cancer types ?x a :CancerDifferentialExpression
where the A1BG | ;
gene expression | genex:hasSequenceUnit
isincreased (up | <https://identifiers.org/hgnc.sym
regulated)? bol:A1BG> ;

:hasTargetDisease / rdfs:label
?cancer;

Page 63 of 85

I n@D E D3.2 — Second Component Release

(response time :hasExpressionChange cancer
~1 second) sio:S10_000640. #increased (up) "stomach canc...
} “urinary bladd...

“head and nec...
“lung cancer"A...
“breast cancer...
"kidney cancer...
“esophageal c...
“thyroid cance...

What are the SELECT ?organ { Retrieves: 74 results in ~0.15 second.
healthy organs ?gene rdfs:label 'A1BG'. organ

where the A1BG | ?gene genex:isExpressedin/ “lower esophagus mucosa’...

is expressed? rdfs:label ?organ.} "left testis"AAxsd:string

“Ammon's horn"AAxsd:string
“left adrenal gland cortex”...
“heart"sMxsd:string

Table 3.1. Querying OncoMX with Ontop and SPARQL query language.

3.2 OpenDatalinking

3.2.1 Mapping from Relational Schema to Ontology via Ontop

Manually writing ontologies and mappings, starting from the relational schema of one or
more available data sources, is a tedious and error-prone process. For this reason, in INODE
our objective is to automate as much as possible the generation of an ontology and
mappings that are well suited for extracting data from the available data sources.

In INODE-SPARQL 1.0, MPBoot goes beyond the W3C Direct Mapping Recommendation
(which was the technique used for INODE 1.0), overcoming several shortcomings of such
recommendation. For convenience, we will refer to the system described in Release 1.0 as
Mapping Patterns Bootstrapper 1.0 (MPBoot 1.0), and to the current system as MPBoot 2.0.
In compliance with the INODE Tasks 4.1 and 4.2, MPBoot 2.0 supports the bootstrapping
process along two main directions: data-driven bootstrapping and task-driven bootstrapping.

Data-driven bootstrapping. In its default modality, MPBoot takes as input a configuration
file, containing the connection parameters to a relational data source, and produces an
ontology and mappings that reflect how the data is organized within the data source. This is
also the modality envisioned by the Direct Mapping recommendation. The main shortcoming
of Direct Mapping, highlighted in Release 1.0, is that the generated ontologies

Page 64 of 85

https://www.w3.org/TR/rdb-direct-mapping/

I nﬁD E D3.2 — Second Component Release

neighbors
(extemaly

galspecline
(extemal)

ref-specobjid

Photometry
(acema)

rekbestPhotometrylD

ref-specobjid

\\\\\\

specob)
Bmal)

A
el
photoobj
(extemal)

spplines
(extemal)

Figure 3.8: SDSS ontology generated by MPBoot 1.0 (left) vs MPBoot 2.0 (right).

are poorly structured. To overcome this limitation, MPBoot 2.0 exploits our theoretical
results on mapping patterns and the capabilities of the OWL 2 QL language to encode in the
ontology schema additional information available in the data source, such as taxonomic
relationships. Specifically, MPBoot 2.0 generates:

® Domain and range axioms for data-properties, by relying on the conversion between
DB types and RDFS recommended by the W3C
o See https://www.w3.org/TR/csv2rdf/#datatypes
e Domain and range axioms for object-properties.
® Subclass relations.

Figure 3.8 compares the ontology produced by MPBoot 1.0 to the one produced by MPBoot
2.0 over the SDSS dataset. We observe that the ontology produced by MPBoot 2.0 has a
richer structure, as it contains semantic connections (object properties and class
subsumptions) between different classes.

Another shortcoming of Direct Mapping we notice here is that it is fully automatic: the
syntactic specification of the ontology classes and relations is exactly the same of the one of
the data sources at hand. This makes the generated ontologies and mappings very hard to be
easily adapted towards specific user-needs. MPBoot 2.0 overcomes this limitation by
supporting a semi-automatic approach to the generation of mappings and ontologies.
Specifically, MPBoot 2.0 allows the user to specify, through a configuration file, information
about:

e What tables and attributes of the DB to use for the automatic bootstrapping process
(e.g., the user could be interested in mapping only a subset of the available tables
and attributes, rather than all of them);

Page 65 of 85

I nﬁD E D3.2 — Second Component Release

e What names to use for the generation of ontology individuals, classes, and
properties obtained from specific tables and attributes of the DB.

The first item allows users to differentiate the portions of the ontology to generate
automatically from those that require manual crafting. The second item allows them to use
names that are more suitable to their needs and understanding of the domain terminology,
rather than those chosen by the database designer (this is particularly useful in the
astrophysics scenario, where several column names use abbreviations that are hard to
understand from a natural language perspective). Thanks to these capabilities of MPBoot 2.0,
the generated ontology and mappings can be easily merged with manually-written
(imported) ontologies and mappings. Such strategy has proved itself successful in the
generation of the ontology and mappings for the SDSS dataset (see Section 4).

Task-driven bootstrapping. As discussed so far, MPBoot drives the bootstrapping process
according to the constraints declared in the DB schema. In real-world scenarios, however,
such constraints might not be available, e.g., due to performance considerations or because
of data source denormalization. As a minimal example of this, consider the DB schema in
Figure 3.9, which is part of the widely-used Spider dataset®:

R ai

+ﬁ airportcode

H city
H airportname
H country BR airlines

ﬂ c.:uuntrg,,rahhrev +E‘-z uid

destairportsEirogaimgert airportcode 1 airline

Fg flights 3 abbreviation

— S| country
#-1 airline

B flightno

-— .
=§ sourceairpo rt

9 destairport

Figure 3.9: Data model of the flights database as part of the Spider dataset. We can observe
the orphan table “airlines” which is not linked with the table “flights” via a primary/foreign
key relationship.

% https://yale-lily.github.io/spider

Page 66 of 85

https://yale-lily.github.io/spider

I n@D E D3.2 — Second Component Release

In such DB schema, there is no explicit (primary/foreign key) relationship between £1ights
and airlines. Hence, the bootstrapper will not generate an object property relating
instances of the class Flights (capturing the elements in the £1ights table) to the
instances of the class Airlines (capturing the elements in the airlines table).

Not having an object property in the ontology has, on the query-answering process, a much
more severe impact than not having a foreign key in the database. Thanks to the expressivity
of the SQL language, in fact, it is still possible to retrieve the country of the airline serving a
specific flight:

SELECT F.airline, F.flightno, A.country
FROM flights AS F JOIN airlines AS A ON F.airline = A.uid
WHERE f.airline = “Lufthansa” AND f.flightno = “2234”

On the SPARQL side, however, without an explicit object property connecting flights and
airlines the above SQL query cannot be expressed at all. Hence, for the database in Figure
3.9, the data-driven bootstrapping process results in schema-to-ontology transformation
which is not lossless.

The idea of task-driven mappings is to exploit a given SQL query workload in order to identify
and fix these situations. With respect to our example, MPBoot will parse the SQL query and
derive that the attribute airline of table £1ights refers to the primary key of table
airlines. Hence, it will conclude that there should be a semantic connection between the
classes Flights and Airlines, and generate an object property accordingly. For our example, it
will generate the following mapping (where we highlighted in green the newly created
“airlines#join-uid” object property):

Id BOOTSTRAPPED-MAPPING-ID1
target <http://semanticweb.org/flights/airlines/uid={airlines_uid}>

<http://semanticweb.org/flights/flights/Airline={fA};FlightNo={fN}> .
source SELECT "airlines"."uid" AS airlines_uid, "flights"."Airline" AS fA,

"flights"."FlightNo" AS fN

FROM "airlines", "flights" WHERE airlines.uid = flights.airline

It is now possible to express the SPARQL equivalent of our SQL query:

SELECT ?country WHERE {

?flight :airline “Lufthansa” ;
:flight_no “2234”;
:airlines#join-uid ?airline .

?airline :country ?country .

}

In Section 4 below, when talking about data models, we will provide and discuss
visualizations for the SDSS ontology, which has been semi-automatically bootstrapped by
means of MPBoot.

Page 67 of 85

I n@D E D3.2 — Second Component Release

4 API SpeciFICATION

In this section we provide the API specification of INODE-SQL 2.0 and INODE-SPARQL 1.0. We
will only specify the new APIs.

4.1 OpenDataDialog

4.1.1 NL-to-SQL and SQL-to-NL

The APl design reported as part of INODE-SQL 1.0 was made general enough to
accommodate new datasets and natural language systems. In this sense, the addition of the
astrophysics dataset SDSS and the natural language system ValueNet to the present release
of INODE-SQL 2.0 has not required any modification to the API specification of these two
services.

The introduction of a logging mechanism oriented towards evaluation has required a new
piece of information to be passed to the two services, so that the inputs, outputs, and
latency of the NL-to-SQL and SQL-to-NL translations can be properly recorded and associated
to a user’s session. This information is an identifier for the user, which is passed in an HTTP
header named X-Reference-ID.

4.1.2 Multi-Table Explorer

The API has changed only slightly due to the addition of new data types and the inclusion of
additional table metadata such as source SQL statement and SQL-to-NL explanation.
However, this was an internal APl change and did not have any impact on our partners’
components which integrate into the Multi-Table Explorer (see Section 1.5 for details).

4.1.3 Pipeline Operators

Our operators are described in Section 1.3.2. Here, we provide the semantics of the two new
operators: by-neighbors and by-distribution, which have been added to
INODE-SQL 2.0.

4.1.3.1 Exploration operator by-neighbors. This operator takes a set .S and returns k
sets s', such that for each predicate (a = v), where a is an ordered attribute return two sets s’
, s". The algorithm for implementation of the by-neighbors operator can be
summarized as: receive input S (an example set), 4 (a set of attributes defining a
distribution) and k£ (the number of resulting sets). Then for each predicate (¢ = v) in
s.description where a is an ordered attribute, return two sets s',s" with the following

description:

o replace (a =v) in s.description with (a = v+1) to obtain s'.description
o replace (a =v) in s.description with (a = v-1) to obtain s".description

Page 68 of 85

INGDE

The screenshot of by-neighbors is as follows:

By Neighbors

Gets the lower and higher sets on a list of ordonned attributes.

— database
required

inputSet »
required

attributes
required

Responses

v 200 Successful Response

— error

errorMsg

payload

w 422 Validation Error

— detail >

application/json

string (Database name)
Enum: "unics cordis" "sdss"
The name of the database to work on

object (Inputset)
The definition of the operator input set (parsed SQL query)

Array of strings (Attributes)
The list of ordonned attributes to look for neighbor sets

application/json

integer (Error)
Default: ©
The error status, 1 if an error has occurred, 0 otherwise

string (Errormsg)
The error message

Array of strings (Payload)
The list of queries resulting of the operation

application/json

Array of objects (Detail)

D3.2 — Second Component Release

4.1.3.2 Exploration operator by-distribution. This operator takes a set of items D and
a set of attributes A and returns k sets of items that are distinct from the D and whose items
share the same distribution of values for each attribute in 4 as items in D.

The SQL expression is as follows: SELECT * FROM D\D' WHERE P:

The algorithm for implementation of the by-distribution operator can be
summarized as: receive input D (an example set), 4 (a set of attributes defining a
distribution) and & (the number of resulting sets). It returns D' that contains the & largest sets
that overlap the least with the input set and which are the most disjoint. All sets have the
same distribution as the input one.

Page 69 of 85

I n@D E D3.2 — Second Component Release

The screenshot of by-distribution is as follows:

By Distribution

Return a list of sets with similar description values distribution (for ordered desctiption attributes)

REQUEST BODY SCHEMA: application/json
' database string (Database name)
required Enum: "unics_cordis" | "sdss"
The name of the database to work on
inputSet » object (Inputset)
required The definition of the operator input set (parsed SQL query)
Responses

v 200 Successful Response

POMSE SCHEMA: application/json

— error integer (Error)
Default: @
The error status, 1 if an error has occurred, 0 otherwise

— errorMsg string (Errormsg)
The error message

H payload Array of strings (Payload)
The list of queries resulting of the operation

~ 422 Validation Error

POMSE SCHEMA: application/json

— detail>» Array of objects (Detail)

4.1.3.3 by-recommendation operator (PyExplore)

This is an example of the REST-endpoint showcasing a sample request and response of a
by-recommend operator.

Below we can see an example with the different values for the request body:

Page 70 of 85

I n@D E D3.2 — Second Component Release

Schemas Y3

pyExploreBody v {
selectDB* string
title: Database name

The name of the database to work on
Enum:

v [SDSS, cordis, dummy]

max_completions* integer
title: Number of completions
default: ¢

The total number of completions
initial_ query* string

title: Initial query

The initial query
clustering method* string

default: anglo
title: The clustering method for the correlation step

The clustering method for the correlation step
Enum:

v | anglo, optics]
view_size max* integer
default: 3
title: The maximum number of attributes per view

The maximum number of attributes per view for hierarchical clustering

clustering2* string
default: H20_Kmeans
title: The clustering method for the second Step

The clustering method for the second step
Enum:

V¥ | Kmeans, H20_Kmeans, MB_Kmeans]
silhouetteSel* string

default: False

title: Compute Silhuette score

Compute Silhuette Score

Enum:

v [False]
doScore* string
default: True
title: Perform scoring for the gueries

Perform scoring for the queries

Enum:

v [True, False]
frac_rows* number
default: 1.0
title: Fraction of rows to use for sampling

Fraction of rows to use for sampling

frac_columns* number
default: 1.0
title: Fraction of columns to use for sampling

Fraction of columns to use for sampling

Page 71 of 85

I nﬁD E D3.2 — Second Component Release

/pyexplore Returns query recommendations

Returns query recommendations

Parameters Try it out

No parameters

Request body application/json v

Example Value | Schema

"max_completions™: "4",

"initial_query”: "SELECT * FROM input_df",
"clustering_method": "anglo”,
"view_size_max": "3",

"selectDB": "dummy”,

"clustering2”:

"view_method™

"target_bins":

"bit_instead_of_nat": "True",
"method”: "mixed",
"vectorization_clustering”: "TF_IDF",
"vec_method1" F_IDF",

"do_app_dt": "False”

Responses
Code Description Links
200 No links
Successful Response
Media type
application/json ~

Controls Accept: header

Example Value = Schema

"results [{\"name\" :\"SELECT * FROM TABLEI1\",\"score _array\" :\"[{\\\"cluster\\\":0,\\\"cou
s\ 12, NN\ view\ W S\ viewI\\\ "3, T\ cluster\\W™ 1 1, \\\ "counts\\\ " : 2, \\\ "view\\\ " s \\\ "viewl\\\ "3\, \"vie
"viewl\"},{\"name\":\"SELECT * FROM TABLEZ where attributeZz — value and attrubute 3 — value3\",\"score
:0.8,\"json_array\" :\"[{\\\"cluster\\\":@, \\\"counts\\\" 12, \\\"view\\\" :\\\ "viewI\\\ "}, \\\"cluster\\\":
1, \\\"counts\\\" 12, \\\"view\\\" : \\\"viewI\\\"}I\", \"view viewl\"}, {\"name\":\"select * from table\",\"scor
e\":0.3,\"json_array\" :\" [{\\\"cluster\\\":8,\\\"counts\\\" : 2, \\\"view\\\" : \\\"viewI\\\"}, {\\\"cluster\\\":

1, \\\"counts\\\" 12, \\\"view\\\ " AN\ "view N\ "N W view\” i 3}, {\"name\" :\"SELECT * FROM TABLEI\",\"sco
re\":0.9,\"json_array\" :\" [{\\\"cluster\\\" :0, \\\"counts\\\ ew\\\" N\ "view2\\\ "}, D\\\"cluster\\\":
1, \\\"counts\\\" 12, \\\"view\\\" S \\\"view2\\\"F]\", \"view\" :\"view2\"}]"

"correlation_array": "{\"columns\":[\"attri\",\"attr2\"],\"index attrl\",\"attr2\"],\"data\":[[1.0,0.
531[0-5,1-0]]}“

]

Page 72 of 85

I nE)D E D3.2 — Second Component Release

view_method* string
default: correlation
title: view selection method

view selection method

Enum:

Vv [correlation, diversity, random]
target_bins* number

default: 128

title: Number of bins for calculating diversity

Number of bins for calculating diversity

dit_instead_of_nat string
default: True
title: Whether or not to use Bit of Natural numbers when computing diversity

Whether or not to use Bit of Natural numbers when computing diversity
Enum:

VvV [True, False]
method_arg* string
default: mixed
title: whether or not we used mixed or string workflow

view selection method

Enum:

Vv [mixed, string]
vectorization clustering* string

default: TF_IDF
title: Vectorization method for the dataset in the string workflow

Vectorization method for the dataset in the string workflow
Enum:

Vv [TF_IDF, doc2vec, CountVector]|
vec_methodl* string
default: TF_IDF
title: Vectorization method for the first step in the string workflow

Vectorization method for the first step in the string workflow

Enum:

Vv [TF_IDF, Doc2Vec]
do_app_dt* string
default: False
title: whether or not to use the approximate decision tree

whether or not to use the approximate decision tree
Enum:

Vv [True, False]

4.1.4 Integrated Query Processing

Ontop is compliant with the standard SPARQL HTTP protocol. One can use POST or GET
requests to communicate with a SPARQL endpoint powered by Ontop.

Example
For example, suppose that the SPARQL endpoint is http://localhost:8080/spargl. Then one
can query this endpoint through a POST request:

POST http://localhost:8080/sparq|
Content-Type: application/sparql-query
Accept: application/json

PREFIX : <http://example.org/voc#>
SELECT DISTINCT ?teacher {
?teacher a :Teacher .

}

Page 73 of 85

https://www.w3.org/TR/sparql11-protocol/
http://localhost:8080/sparql

I n@D E D3.2 — Second Component Release

The above request can be sent through, for instance, a cURL command:

S curl --request POST \
--url http://localhost:8080/sparqgl \
--header 'accept: application/json'\
--header 'content-type: application/spargl-query' \
--data 'PREFIX : <http://example.org/voc#> SELECT DISTINCT ?teacher {?teacher a :Teacher
J
{
"head" : {
"vars" : [
"teacher"
]
2
"results" : {
"bindings" : [
{
"teacher" : {
"type" : "uri",
"value" : "http://example.org/voc#unil/academic/1"
}
2
{
"teacher" : {
"type" : "uri",
"value" : "http://example.org/vocttunil/academic/2"
}
2
/] ...
]
}
1%

Language-specific API
Any language-specific API supporting the SPARQL HTTP protocol can be used in combination
with Ontop. Notable examples include:

Java with the Maven dependency: org.eclipse.rdf4j:rdf4j-client

Python with the RDFLib lirary https://github.com/RDFLib/sparqglwrapper
e JavaScript in HTML using standard Fetch API following the SPARQL HTTP

protocol

A demo on how to use the SPARQL API through a programmatic interface is
demonstrated at https://github.com/ghxiao/ontop-endpoint-demo.

Page 74 of 85

https://github.com/ghxiao/ontop-endpoint-demo/blob/master/java
https://rdf4j.org/javadoc/latest/index.html?org/eclipse/rdf4j/http/client/package-summary.html
https://github.com/ghxiao/ontop-endpoint-demo/blob/master/py
https://github.com/RDFLib/sparqlwrapper
https://github.com/ghxiao/ontop-endpoint-demo/blob/master/js
https://github.com/ghxiao/ontop-endpoint-demo

I n@D E D3.2 — Second Component Release

4.2 OpenDatalinking

4.2.1 OpenDatalinking Triple Extraction from NL-text Endpoint (REST-endpoint)

The APl of OpenDatalinking Triple Extraction from NL-text remains unchanged from INODE
v1.0.

4.2.2 MPBoot API

The bootstrapping of ontologies and mappings is an offline activity which happens before the
deployment of the INODE system. For such a reason, MPBoot does not provide a
programmatic interface, but is a command-line tool.

S ./ontop help bootstrap
NAME
ontop bootstrap - Bootstrap ontology and mapping from the database
SYNOPSIS
ontop bootstrap [{-a | --advanced}] [{-b | --base-iri} <base IRI>]
[{-c | --constraint} <constraint file>]
{-m | --mapping} <mapping file>
{-p | --properties} <properties file>
[{-r | --renamings} <Aliases CSV file>]
[{-t | --ontology} <ontology file>]
[{-w | --workload} <Workload JSON file>]
OPTIONS
-a, --advanced
Enable patterns-based generation (MPBoot)

-b <base IRI>, --base-iri <base IRI>
base uri of the generated mapping

-c <constraint file>, --constraint <constraint file>
user supplied DB constraint file

-m <mapping file>, --mapping <mapping file>
Mapping file in RZRML (.ttl) or in Ontop native format (.obda)

-p <properties file>, --properties <properties file>
Properties file

-r <Aliases CSV file>, --renamings <Aliases CSV file>
Renamings file [with -a only]

-t <ontology file>, --ontology <ontology file>
OWL ontology file

-w <Workload JSON file>, --workload <Workload JSON file>
Query workload [with -a only]

Page 75 of 85

I n@D E D3.2 — Second Component Release

For instance, the command exploiting task-driven generation used for the airlines example in
Section 3.2.1 is the following:

S ./ontop bootstrap -a -b "http://www.inode-project.eu" \

-t "onto/flight_2.owl" -m "onto/flight_2.obda" \
-p "onto/flight_2.properties" -w "onto/flights_queries.json"

4.3 Logging Services

The logging API consists of a single operation for writing a log entry:

writeLogEntry

application/json

— string <date-time>
— f_—D;;:: string
C e g
string
object
— property name* object

The log entry to be recorded is passed as the operation’s parameter. This log entry is a JSON
object that consists of a timestamp, a reference identifier (RID), the name of the INODE
service/component that triggers the event being recorded (emitter), the type of event being
recorded, and a payload object that provides additional details on the event and whose
attributes depend on the specific event type.

Consider an example for the logging of evaluation parameters, where a participant starts a
session in the INODE-SQL 2.0 frontend. The entries recorded in the log are shown in Figure
4.1.

Page 76 of 85

I n@D E D3.2 — Second Component Release

"timestamp": "2021-01-
"rid": null,

"emitter": "frontend",
"event": "create-new-id",

"payload": {}

"timestamp": "2021-01-C
"rid": null,
"emitter": "backe
"event":
"payload":
"rid": "550e8400-e29b-11d4-a716-446655440000"

"timestamp": "2021-01-26T12:48:5

"rid": null,

"emitter": "frontend",
"event": "r
"payload":

"rid":

"rid": "550

"emitter": "frontend",

Figure 4.1: An example of a log structure.

The logging example demonstrated in Figure 4.1 shows an extract from the logging

mechanism in action when the user first makes a request to the web app or “ " at
timestamp . The “ ” makes a request or an
“event” called “ ” for an user id (or “rid”) to the “ “at the same
time instant. The “ ” generates the user ID (or “rid”) as “payload”

and sends to the “ to

Page 77 of 85

I n@D E D3.2 — Second Component Release

”

complete the request. The “ " acknowledges the “cvent” as “ and
the specific user ID (or “rid”) is assigned to the INODE web app. The “ ” changes
the current “cvent” from “ " to

“ ”n

Using our logging mechanism we are now able to record the Query Execution start time and
end time and calculate the Query Execution Latency for different systems (e.g. Nalir+, SODA,
Logos, ValueNet). In order to find the query execution latency for each system, a fixed set of
payload was given to each system. The average query execution for latency for SODA is
2939.57 ms, for Logos it is 36.62 ms, for Nalir+ it is 1403.3 and for ValueNet it is 6924.38 ms.

Page 78 of 85

I n@D E D3.2 — Second Component Release

5 Data MobDELs

In this section we provide the database graphs, the entity-relationship diagrams and their
corresponding ontology views for the three use cases research & innovation policy making
(CORDIS), astrophysics (SDSS), and cancer research (OncoMX).

In contrast with the previous release, the database graphs of both CORDIS and SDSS
databases are annotated and stored only once in the system. Special labels have been
created for the majority of the nodes and the edges of the graphs (in order for Logos to
produce more natural explanations). Each node in the graph corresponds to a table or an
attribute. Edges connect either table with table (foreign-primary key relationships) or an
attribute with its corresponding table. Given an input query, Logos produces its natural
language explanation by traversing an extended part of this graph (called query graph)
corresponding to that particular query.

5.1 Research & Innovation Policy Making (CORDIS)

Except for the database graph, there were no changes on the data model since the
INODE-SQL 1.0 release.

The new database graph of CORDIS produced by Logos is illustrated in Figure 5.1.

LIT? g
© pediEa® BT ate

ST ®
5 A

Figure 5.1: CORDIS database graph created by Logos.

Page 79 of 85

I n@D E D3.2 — Second Component Release

5.2 Astrophysics (SDSS)

There are no changes to the core data model (entity-relationship diagram) with respect to
INODE 1.0. However, the effort towards the creation of the ontology and mappings for this
scenario has progressed, since INODE 1.0, in two directions: one automatic (data-driven) and
the other manual.

The first direction has been followed through MPBoot, which allowed us to specify the
portions of the database that needed to be mapped automatically, and to freely choose the
names for instances, classes, and properties. Thanks to this flexibility, it has been possible to
directly merge the bootstrapped ontology together with the one we manually produced for
INODE 1.0. An additional effort has then been spent in the manual refinement of the merged
ontology. A visualization of the result of these activities is provided in Figure 5.2.

Figure 5.2: SDSS ontology 2.0 (WebVOWL visualization).

Page 80 of 85

I nED E D3.2 — Second Component Release

By retrieving information about the attributes, their corresponding tables and the
relationships among them, the SDSS database graph of Logos is created (see Figure 5.3).

ol
e ol

Wi, and el

and el

Figure 5.3: SDSS database graph created by Logos.

5.3 Cancer Research (OncoMX)

The OncoMX relational data schema slightly changed, to be better compliant with version
1_0_25 of the OncoMX original datasets®®. Moreover, we did some patches to correct minor
issues in the database schema and data used to populate it. The main modifications are
listed in Table 5.1. Furthermore, the latest OncoMX Extended Entity-Relationship (EER)
diagram is available for download®’.

3 https://data.oncomx.org

Page 81 of 85

ftp://ftpbgee.unil.ch/inode/oncomx_v1_0_25_SQL_schema.pdf
https://data.oncomx.org

I n@D E D3.2 — Second Component Release

Table Modification

project_study Removed

differential_expression doid (disease ontology id) column added

differential_expression study_id column removed

cancer_tissue Added. It relates a cancer type to an organ.

disease_mutation Added ensembl_transcript_id as a foreign key to
relate disease_mutation with
map_protein_disease_mutation table

Table 5.1: The main changes in the OncoMX relational data model.

We also improved the cancer biomarker ontology (CBIO) developed by us to better describe
the OncoMX data. CBIO does not aim to solely serve as a controlled vocabulary but also as a
data schema in the cancer biomarker domain. In addition to OWL 2 built-ins (e.g.,
owl:sameAs), we use SKOS*® terms such as skos:narrowMatch to define abstract mappings
with external ontologies that often acts as controlled vocabularies. For example, the CBIO
term

MetabolomicBiomarker skos:narrowMatch <http://purl.obolibrary.org/obo/NCIT C18520>

is an ontology term for the Metabolic Marker definition from National Cancer Institute
Thesaurus.

Moreover, CBIO can be visualised with the WebVOWL tool®. Figure 5.4 illustrates a portion
of CBIO by using the WebVOWL tool and Figure 5.5 shows part of the biomarker class
hierarchy. Figure 5.6 demonstrates an intersection node (i.e., Gene node) in the OncoMX
knowledge graph generated with Ontop to relate/link the different OncoMX datasets via “has
sequence unit” property assertions.

8 sKos Simple Knowledge Organization System, https://www.w3.0rg/2004/02/skos/.
39 http://www.visualdataweb.de/webvowl/#iri=http://purl.org/cbio

Page 82 of 85

http://purl.obolibrary.org/obo/NCIT_C18520
http://www.visualdataweb.de/webvowl/#iri=http://purl.org/cbio
https://www.w3.org/2004/02/skos/

Figure 5.4: Visualizing the cancer biomarker ontology with the WebVOWLtool32

D3.2 — Second Component Release

» Description

¥ Metadata

¥ Statistics

» Selection Details

.Currently, it

is composed of 165 classes and 118 properties.

A portion of the biomarker class hierarchy]

CHEBI:5916

biomarker

biomarkei
panel

single genomic
biomarker biomarker

subClassOf

Biomarker classes in use]

cancer
biomarker

cancer gene
biomarker pane| biomarker

EFO:0000311
cancer
hlomarker mducate

-Domain(biomarl ker)
-Range(disease)

EFQ.0000408
disease material property
v @ disposition
disease (EFO0000408)
cell proliferation disorder
d condition
hyperplasia (EFO-0000536)
neoplastic disease or syndrome
meoplasm (EFO-00006 16)

benign neoplasm (EFO-0002422)
er (EFO-000031 1))

T cancer
iomarker pan geneNumber

-Range(nonNegativelnteger)

> :nu\ ||\||-:Ha||'UE|HIEgEII

-Domain(biomarker panel)

Figure 5.5: Biomarker ontological terms.

Page 83 of 85

INGDE

Gene Expression

Absence of Gene
Expression

Disease Mutation

Cancer Single
Biomarker

D3.2 — Second Component Release

<https://identifiers.org/ensembl:{ensembl_gene_id}>
<https://identifiers.org/hgnc.symbol:{gene_symbol}>

[
>

has Sequence Unit

label

seeAlso

organism
xrefEnsemblGene
encodes

Figure 5.6: Gene instances as an intersection node among different OncoMX datasets in the
OncoMX knowledge graph generated with Ontop. Edges represent “has sequence unit”
property assertions and nodes are instances of the respectives named OWL classes. Bold
terms below the gene node list examples of gene attributes.

Page 84 of 85

