
Document Due Date: 28/02/2021
Document Submission Date: 28/02/2021

Work Packages 3, 4, 5, 6, 7, 8

Type: Other (Software)
Document Dissemination Level: Public

INODE
Intelligent Open Data Exploration

is funded by the Horizon 2020 Framework Programme of the EU for Research and Innovation.
Grant Agreement number: 863410— INODE — H2020-EU.1.4.1.3.

D3.2 – Second Component Release

(This page has been intentionally left blank)

Page 1 of 85

D3.2 – Second Component Release

Executive Summary

This deliverable provides the second software component release of the INODE project and
includes all 6 services covered by WPs 3 to 8. We assume that the reader is familiar with
Deliverable D3.1-D8.1, which describes INODE 1.0, i.e. the status of INODE at project month
10. This deliverable describes the status and the new activities of INODE at project month 16.

- Section 1 presents all new INODE features: new components that are added as well
as how existing components are upgraded. It provides a summary of the main
features and pointers to the respective sections that provide more details.

- Section 2 and Section 3 describe INODE-SQL 2.0 and INODE-SPARQL 1.0, the two
user-facing services for SQL and SPARQL data sources, respectively

- Section 4 describes the API extensions of the INODE services and Section 5 the data
model extensions of the three use cases “Research & Innovation Policy Making”
(CORDIS), “Astrophysics” (SDSS), and “Cancer Research” (OncoMX) with respect to
INODE 1.0.

Page 2 of 85

D3.2 – Second Component Release

Project Information

Project Name Intelligent Open Data Exploration
Project Acronym INODE
Project Coordinator Zurich University of Applied Sciences (ZHAW), CH
Project Funded by European Commission

Under the Programme
H2020-EU.1.4.1.3. - Development, deployment and
operation of ICT-based e-infrastructures

Call H2020-INFRAEOSC-2019-1
Topic INFRAEOSC-02-2019 - Prototyping new innovative services
Funding Instrument Research and Innovation action

Grant Agreement No. 863410

Document Information

Document reference D3.2

Document Title Second Component Release

Work Package reference WP3, WP4, WP5, WP6, WP7, WP8

Delivery due date 28/02/2021

Actual submission date 28/02/2021

Dissemination Level Public

Authors(s)

Koutrika Georgia, Eleftheraki Stavroula, Glenis Apostolis,
Mandamadiotis Antonis (ATHENA)
Amer-Yahia Sihem, Patil Yogendra, Personnaz Aurélien (CNRS)
Lücke-Tieke Hendrik, May Thorsten (Fraunhofer)
Litke Antonis, Papadakis Nikolaos, Papadopoulos Dimitris (Infili)
Fabricius Maximilian, Subramanian Srividya (MPE)
Bastian Frederic, Mendes de Farias Tarcisio, Stockinger Heinz
(SIB)
Massucci Francesco, Multari Francesco, Rull Guillem (SIRIS)
Calvanese Diego, Lanti Davide, Mosca Alesandro, Guohui Xiao
(UNIBZ)
Braschler Martin, Brunner Ursin, Kosten Catherine, Sima Ana,
Smith Ellery, Stockinger Kurt (ZHAW)

Page 3 of 85

D3.2 – Second Component Release

Table of Contents

1 THE INODE SYSTEM 6

1.1 Integrated Query Processing 11

1.1.1 Query execution over rich types of data sources 12

1.1.2 Source Federation 13

1.1.3 Data Analytics 13

1.1.4 Answer Justification 13

1.2 Data Linking and Modelling 14

1.2.1 Mapping Construction 14

1.2.2 Knowledge Base Construction 14

1.3 Data Access & Exploration 15

1.3.1 By Natural Language 15

1.3.2 Pipeline Operators 18

1.4 User Assistance 20

1.4.1 Explanations 20

1.4.2 Recommendations 22

1.5 Multi-Modal Discovery 26

1.5.1 Visual Result Exploration 26

1.5.2 Visual Query Manipulation 29

1.5.3 Integrated seamless query-response loop 29

1.6 Evaluation 29

1.6.1 Logging of system parameters 30

1.6.2 Quantitative evaluation parameters 31

1.6.3 Data analysis 32

2 INODE-SQL 2.0 In Action 33

2.1 OpenDataDialog 33

2.1.1 NL-to-SQL: Translating Natural Language Questions to SQL 33

2.1.1.1 Querying CORDIS in NL with ValueNet 33

2.1.1.2 Querying SDSS in NL with SODA 35

2.1.2 SQL-to-NL: Explaining SQL Queries Using Natural Language 37

2.1.3 Recommending Queries (PyExplore) 39

2.1.4 Pipeline Operators 41

Page 4 of 85

D3.2 – Second Component Release

2.1.5 Summary 45

2.2 OpenDataLinking 45

2.2.1 Triple Refinement 45

2.3 Integration of OpenDataLinking with OpenDataDialog 48

3 INODE-SPARQL 1.0 In Action 57

3.1 OpenDataDialog 57

3.1.2 NL-to-SPARQL: Translating Natural Language Questions to SPARQL 57

3.1.2.1 Querying CORDIS in NL with Bio-SODA 57

3.1.2.2 Reasoning over the CORDIS Ontology 58

3.1.2.3 Querying SDSS in NL with Bio-SODA 58

3.1.2.4 Reasoning over the SDSS Ontology 60

3.1.3 Enabling SPARQL Queries over OncoMX 61

3.1.3.1 Enriching OncoMX with Ontologies using Ontop 61

3.1.3.2 Reasoning over the OncoMX Ontology 62

3.1.3.3 Querying OncoMX with SPARQL 64

3.2 OpenDataLinking 65

3.2.1 Mapping from Relational Schema to Ontology via Ontop 65

4 API Specification 69

4.1 OpenDataDialog 69

4.1.1 NL-to-SQL and SQL-to-NL 69

4.1.2 Multi-Table Explorer 69

4.1.3 Pipeline Operators 69

4.1.3.3 by-recommendation operator (PyExplore) 71

4.1.4 Integrated Query Processing 74

4.2 OpenDataLinking 76

4.2.1 OpenDataLinking Triple Extraction from NL-text Endpoint (REST-endpoint) 76

4.2.2 MPBoot API 76

4.3 Logging Services 77

5 Data Models 80

5.1 Research & Innovation Policy Making (CORDIS) 80

5.2 Astrophysics (SDSS) 81

5.3 Cancer Research (OncoMX) 82

Page 5 of 85

D3.2 – Second Component Release

1 THE INODE SYSTEM

Our new version of INODE system has expanded in three directions:

1. System components: Existing components have been enhanced and new
components have been added. For example, for enabling natural language queries,
we offer different text-to-SQL systems.

2. Sources: INODE enables natural language querying over sources that allow for SQL or
SPARQL queries: INODE-SQL 2.0 and INODE-SPARQL 1.0. More precisely, INODE-SQL
2.0 is the evolved version of what was offered in INODE 1.0, i.e. at project month 10,
while INODE-SPARQL 1.0 is the new service for SPARQL-based data sources.

3. Use cases: Two of our three use cases are fully supported by all services. The third
and most complex use case is supported by parts of the services without full
integration of natural language capabilities.

Table 1.1 summarizes the progress in INODE. It shows which new components are added and
which are upgraded. It provides a summary of the main features and pointers to the
respective sections that provide more details.

System (Work Package) Summary of Features Section

Integrated Query Processing
Services (WP3)

Query Execution (Task 3.1) ● Better support for both SQL and
SPARQL data types.

● Support of geospatial data sources
and of the GeoSPARQL query
language.

1.1.1

Source Federation (Task 3.2) ● Support of different SQL federation
engines for integrating multiple data
sources.

1.1.2

Data Analytics (Task 3.3) ● Support of SPARQL aggregate
functions for data analytics.

1.1.3

Answer Justification (Task 3.4) ● A prototype (not yet integrated in
the main development branch of
Ontop) relying on ProvSQL, a tool for
provenance developed in the
context of RDBMSs.

1.1.4

Page 6 of 85

D3.2 – Second Component Release

Data Linking and Modelling (WP4)
1.2

Mapping Construction (Tasks 4.1
and 4.2)

MPBoot:
• Improvements in the automated

generation of ontologies from data
sources.

• Ability to encode in the ontology
schema additional information
available in the data source, such as
taxonomic relationships.

• Ability to exploit a given SQL query
workload to derive semantic
connections between classes and
generate object properties.

1.2.1

Knowledge Base Construction (Task
4.3)

Information Extraction:
• Improvements in the process of

extracting triples from NL text (open
information extraction) for both
engines and linking them to specific
ontologies (entity linking).

• Implementation of a unified
extraction approach to efficiently
consolidate the extracted triples
from both engines.

• Support for SQL queries targeting
the distilled knowledge from
information extraction processes.

1.2.2

Data Access & Exploration (WP5) 1.3

By Natural Language (Task 5.3)
ValueNet:
Natural language to SQL with a neural
network-based transformer
architecture approach.

Bio-SODA:
Natural language to SPARQL with a
graph-based approach.

1.3.1

Page 7 of 85

D3.2 – Second Component Release

SODA:
Natural language to SQL (Adaptations
for the SDSS dataset).

By Example, By analytics (Tasks 5.1
and 5.2)

By-neighbors.
This operator searches the
neighborhood of a set of items and
returns close sets.

By-distribution.
This operator searches the whole data
space for sets whose value distributions
are the same as the input set.

1.3.2

User Assistance (WP6) 1.4

Explanations (Task 6.1)
Logos:
● Extended to translate the SQL

queries produced by ValueNet, as
well as the queries generated by the
data exploration operators.

● Improvements in terms of query
semantics.

● Improvements in terms of
translation accuracy.

1.4.1

Recommendations (Task 6.2)
PyExplore
● Recommends interesting queries for

the user by leveraging data
correlations and diversity.

● Handles datasets with mixed
numeric and categorical attributes.

● The recommended queries have an
augmented WHERE-clause if there
was a WHERE-clause in the initial
query, or a new WHERE-clause if
there was no WHERE-clause.

1.4.2

Multi-Modal Discovery (WP7) 1.5

Visual Result Exploration (Task 7.1) Visual exploration improved by
increasing information density and
providing a better overview over
multiple search results.

1.5.1

Page 8 of 85

D3.2 – Second Component Release

Visual Query Manipulation (Task
7.2)

Interactions have been extended to
reflect the arguments needed by the
available exploration operators.

1.5.2

Integrated seamless query-response
loop (Task 7.3)

Improved user experience and UI
performance.
Consolidated the code base
(consolidation and streamlining of
multi-table-explorer user experience) in
preparation for OpenDataDialog 3.0.

1.5.3

Evaluation (WP8)
Logging

1.6

A new logging mechanism to record
specific system information is designed
and put into place, in order to perform
evaluation of the INODE system.

Table 1.1: Summary of developments.

SERVICES INODE-SQL 2.0 INODE-SPARQL 1.0

Integrated Query Processing

(WP3)

Ontop

Data Linking and Modelling

(WP4)

Mapping Construction
MPBoot

Knowledge Base Construction
Triple Extraction from NL-text

Data Access & Exploration

(WP5)

- by NL SODA, ValueNet BioSODA

- by-example, by-analytics Pipeline Operators: added one

new instance of by-example

(by-neighbors) and one new

instance of by-analytics

(by-distribution)

Page 9 of 85

D3.2 – Second Component Release

User Assistance (WP6)

- Explanations Logos

- Recommendations PyExplore

Multi-Modal Discovery (WP7) Multi-Table Explorer

Evaluation (WP8) Logging

Use Cases CORDIS, SDSS, OncoMX CORDIS, SDSS,

OncoMX

Table 1.2: Summary of the INODE services provided by each work package that are part of
INODE-SQL 2.0 (SQL-based) and INODE-SPARQL 1.0 (SPARQL-based).

An overview of the INODE system architecture with the major services is given in Figure 1.1.
The main interface for users to interact with the INODE-SQL 2.0 part of the system in the
present release is the OpenDataDialog 2.0 web application. This application acts as the
integration layer for the services that are colored green in Figure 1.1.

Figure 1.1: Services of INODE system architecture. The services shown in green refer to
“OpenDataDialog”, the services in orange to “OpenDataLinking” and the services in blue as

Page 10 of 85

D3.2 – Second Component Release

“Backend Services”. INODE-SQL 2.0 is the user-facing service that allows access over SQL data
sources and INODE-SPARQL 1.0 also access over RDF knowledge graphs.

1.1 Integrated Query Processing

Integrated query processing is the core service of OpenDataDialog in INODE-SPARQL 1.0, as it
provides the SPARQL query answering capability used by almost all other components. Such
a service relies on Ontop1, a popular Virtual Knowledge Graph (VKG) system. A VKG is a
virtual representation in the form of a graph of the information coming from multiple,
possibly heterogeneous, data sources. Such representation relies on the RDF
recommendation as the format to represent the data as a graph, and on OWL 2 QL2 as the
language to represent ontologies. Both are W3C standards for VKGs. The RDF graph is virtual
in the sense that it does not contain data extracted from the data sources (which are
physically stored somewhere, e.g. in a relational database), but rather each query over the
VKG is translated by Ontop into a query over the original data sources. This is done through
reformulation techniques well studied in the literature, as well as a number of optimizations
performed by Ontop itself, so as to reduce to a minimum the overhead introduced by
virtualization and translation. The link between the VKG and the data sources is realized
through a domain-specific ontology, providing a vocabulary for SPARQL queries abstracting
from storage details, and through a set of mappings relating elements in the ontology to
queries over the data sources.

Ontop is not a prototype tool, but a complex, well-engineered, and well-established software
artifact that relies on and interacts with several technologies. Most notably, Ontop supports
all major open and commercial RDBMSs (e.g., PostgreSQL, Oracle, DB2, Microsoft SQL Server,
etc.), and it supports all relevant W3C standards (RDF, RDFS, OWL 2 QL, R2RML, SPARQL, and
GeoSPARQL). Ontop can be used in several different ways: as a SPARQL endpoint to query
through HTTP, as an API to enrich other Java applications, or simply as a shell tool.

Progress within INODE. To cope with the challenges brought by INODE, Ontop has been
improved in several aspects. The design of the new Ontop v4 release has been described in
the paper the Virtual Knowledge Graph System Ontop3 published at ISWC 2020. Below we
highlight some improvements with respect to the tasks.

1.1.1 Query execution over rich types of data sources

We have redesigned the typing system of Ontop and implemented better support for both
SQL and SPARQL datatypes. Proper handling of datatypes in SPARQL (e.g., xsd:integer,
xsd:string, xsd:time) and in SQL (e.g., INT, VARCHAR, DECIMAL) is crucial in VKG, but it is also
rather challenging. The reason is that SQL is statically typed in the sense that all values in a
given relation column (both in the database and in the result of a query) have the same
datatype. In contrast, SPARQL is dynamically typed: a variable can have values of different

3 Guohui Xiao, Davide Lanti, Roman Kontchakov, Sarah Komla-Ebri, Elem Güzel-Kalayci, Linfang Ding,
Julien Corman, Benjamin Cogrel, Diego Calvanese, and Elena Botoeva. The Virtual Knowledge Graph
System Ontop. In International Semantic Web Conference (ISWC 2020), volume 2, pages 259–277,
2020.

2 https://www.w3.org/TR/owl2-profiles/#OWL_2_QL

1 https://ontop-vkg.org/

Page 11 of 85

D3.2 – Second Component Release

datatypes in different solution mappings. Also, the output datatype of a SPARQL function
depends on the types or language tags of its arguments (e.g., if both arguments of ’+’ are
xsd:integer, then so is the output, and if both arguments are xsd:decimal, then so is the
output). In particular, to determine the output datatype of an aggregate function in SPARQL,
one has to look at the datatypes of values in the group, which can vary from one group to
another. In Ontop v4, we have redesigned the typing system, which supports all standard SQL
datatypes of a database, and SPARQL datatypes in queries. Moreover, Ontop is able to
perform type inference in SPARQL normal functions and SPARQL aggregate functions.

We have implemented support of geospatial data sources and of the GeoSPARQL query
language. Supporting geospatial data sources is important in many use cases e.g., oil
exploration4, maritime security5, and LinkedGeoData6. In the past, we have contributed to
the development of a prototype system called Ontop-spatial7 as a fork of Ontop, which
supports a limited fragment of GeoSPARQL. However, this fork is not maintained anymore,
and its functionality did not catch up with the latest developments of Ontop. To address this
issue, we have reimplemented GeoSPARQL support in Ontop v4. With respect to the old
implementation, it has significantly improved the compliance with the Open GeoSPARQL
Consortium (OGC) GeoSPARQL standard. All of the geospatial functions defined in
GeoSPARQL are implemented. In particular, it features improved handling of units (such as
degrees and meters) and different spatial reference systems (SRIDs). We have tested it over
PostgreSQL/PostGIS and H2/H2GIS, and it should work with all relational database systems
that are compliant with the OGC Implementation Standard Simple Feature Access.

All the activities described in the paragraphs above comply with the goals of Task 3.1.

1.1.2 Source Federation

We have implemented support of SQL federation engines for integrating multiple data
sources. In Ontop v4, we support popular federation engines, namely Denodo, Dremio, and
Teiid. These engines have different features and licenses, and can be applied in different
scenarios. For each federation engine, we needed to implement specific adaptors, which
include metadata extraction (e.g., table definitions and constraints) and SQL dialect
translators. Moreover, extensive tests were needed to make sure Ontop interacts with these
federation engines correctly and efficiently. Federation is an essential capability that will
bring several benefits to our use cases. For instance, with respect to the CORDIS use case, it
would be interesting to integrate the data in the CORDIS portal with the information from
the European Patent Office (EPO8), allowing questions such as retrieving the number of EU
patent owners who have also played the role of Principal Investigator in an EU project in the
5 years preceding the patent registration. All these activities comply with the goals of Task
3.2.

8 https://data.epo.org/linked-data/

7
Konstantina Bereta, Guohui Xiao, and Manolis Koubarakis. Ontop-spatial: Ontop of geospatial databases. Journal of Web Semantics, 58, 2019.

6
Claus Stadler, Jens Lehmann, Konrad Höffner, and Sören Auer. Linkedgeodata: A core for a web of spatial open data. Semantic Web

Journal, 3(4):333–354, 2012. http://linkedgeodata.org/.

5
Stefan Brüggemann, Konstantina Bereta, Guohui Xiao, and Manolis Koubarakis. Ontology-based data access for maritime security. In

Extended Semantic Web Conference (ESWC), 2016.

4
Evgeny Kharlamov, Dag Hovland, Martin G. Skjæveland, Dimitris Bilidas, Ernesto Jim ́enez- Ruiz, Guohui Xiao, Ahmet Soylu, Davide

Lanti, Martin Rezk, Dmitriy Zheleznyakov, Martin Giese, Hallstein Lie, Yannis Ioannidis, Yannis Kotidis, Manolis Koubarakis, and Arild
Waaler. Ontology based data access in statoil. Journal of Web Semantics, 44:3–36, 2017.

Page 12 of 85

http://linkedgeodata.org/

D3.2 – Second Component Release

1.1.3 Data Analytics

We have implemented support of SPARQL aggregate functions for data analytics.
Aggregate functions are a basic capability provided by essentially any database system, and
typically application scenarios require them. Aggregate functions are needed by essentially
all our scenarios, as they allow basic queries such as to count the number of EU projects a
certain institution has participated in. One important challenge to provide aggregate
functions over VKGs is to treat cardinalities carefully in order to obtain results that are
compliant with the SPARQL semantics (e.g., for SUM and AVG): the SQL queries in a mapping
produce bags (i.e., multisets) of tuples, but their induced RDF graphs contain no duplicates
and thus are sets of triples; however, when a SPARQL query is evaluated, it results in a bag of
solution mappings. To make the evaluation of aggregate functions feasible in practical
scenarios, we had to develop novel and dedicated optimization techniques, involving a
sophisticated treatment of the SQL DISTINCT operator. In Ontop v4, we support all 6 SPARQL
aggregate functions: COUNT, SUM, MIN, MAX, AVG, GROUP_CONCAT, and SAMPLE. All these
activities comply with the goals of Task 3.3.

1.1.4 Answer Justification

We want the users to be able to reconstruct why a specific answer was returned by Ontop.
Such justification is not only in terms of where the data comes from (data provenance), but
also in terms of which ontology axioms and mapping assertions were involved during the
query reformulation phase (ontology provenance and mapping provenance, respectively). To
support this task, we have implemented a prototype (not yet integrated in the main
development branch of Ontop) relying on ProvSQL9, a tool for provenance developed in the
context of RDBMSs. ProvSQL only supports PostgreSQL, and to the best of our knowledge no
other tool exists for other types of data sources that would be robust enough.

1.2 Data Linking and Modelling

1.2.1 Mapping Construction

We have improved the functionalities of the MPBoot system, which automatically generates
ontologies and mappings from available data sources. The latest MPBoot 2.0 showcased in
INODE-SPARQL 1.0 supports data-driven and task-driven bootstrapping.

In the case of data-driven bootstrapping, MPBoot is now able to produce richer ontologies
and mappings compared to the Direct Mapping approach, supporting domain and range
axioms for data and object properties as well as subclass relations. MPBoot 2.0 also
introduces a semi-automatic approach for ontology generation, allowing the user to specify
the portions of the ontology to be generated automatically depending on their needs.

In the case of task-driven bootstrapping, MPBoot allows the user to drive the bootstrapping
process by specifying a SQL query workload in order to derive semantic connections between
classes and generate object properties accordingly. This can be extremely useful for cases

9 https://github.com/PierreSenellart/provsql

Page 13 of 85

D3.2 – Second Component Release

where there is no explicit connection between classes and the expressivity of the SQL
language is the only way to infer such connections.

1.2.2 Knowledge Base Construction

We have introduced a set of improvements in the OpenDataLinking component of
INODE-SQL 2.0 focusing on information extraction from unstructured text.

With regard to the triple extraction process, we have implemented a triple refinement
approach to combine the outputs of the precision-oriented approach of one engine and the
recall-oriented approach of the second engine. This allows for an efficient unification of both
engines’ results, without sacrificing performance. An additional set of fine-tuning parameters
are also added to ensure the seamless integration of the triple refinement system to the
OncoMX data.

We have also increased the synergy among the OpenDataLinking and OpenDataDialog
components. The distilled knowledge from the aforementioned information extraction
processes is used to enrich the existing data models and can now be queried under the
INODE-SQL.2.0 system.

1.3 Data Access & Exploration

1.3.1 By Natural Language

Progress within INODE. For translating natural language questions to SQL or SPARQL, INODE
now supports three services with different capabilities: SODA, ValueNet and BioSODA. SODA
(already integrated from the previous version) and the newly added ValueNet are both
text-to-SQL services - also referred to as NL-to-SQL service. The former enables advanced
keyword queries, while the latter allows for natural language queries. BioSODA is a
text-to-SPARQL service - also referred to as NL-to-SPARQL service.

ValueNet10 is a text-to-SQL system based on neural networks. As an input, ValueNet receives
a question in natural language and a specific database. As an output, ValueNet delivers a fully
fledged SQL query which is then executed against said database and delivers the information
the user asked for. ValueNet uses the power of large, pre-trained language models to
understand a natural language question and synthesizes a SQL query which represents that
question most accurately.

In contrary to classical, rule-based text-to-SQL systems such as SODA11, ValueNet contains no
engineered knowledge but learns from large, open source text-to-SQL data corpora like
Spider12. After training ValueNet on a general text-to-SQL corpus we either apply the trained

12 Tao Yu et al., “Spider: A Large-Scale Human-Labeled Dataset for Complex and Cross-Domain
Semantic Parsing and Text-to-SQL Task”, EMNLP 2018

11 Blunschi, L., Jossen, C., Kossmann, D., Mori, M., & Stockinger, K. (2012). SODA: Generating SQL for
business users. Proceedings of the VLDB Endowment, 5(10), 932-943.

10 Ursin Brunner and Kurt Stockinger: “ValueNet: A Natural Language-to-SQL System that Learns from
Database Information”, ICDE 2021

Page 14 of 85

D3.2 – Second Component Release

model of ValueNet to our project database (e.g., CORDIS) in a zero shot setting13, or we
fine-tune ValueNet on a low number of training samples prepared for that specific database
(few shot learning).

Figure 1.2: ValueNet high level architecture.

The flow of data in a text-to-SQL scenario is described in Figure 1.2. The user poses a
question in natural language, which is going to be the input for ValueNet, together with the
database (schema and content).

In the first stage, ValueNet will do pre-processing on the question/schema. One important
sub-task here is to look for potential values in the question which are contained in the
database (e.g., “Show me all John Smith in Texas”). These “hints” together with the input
data are then submitted to the second stage.

The second stage is the core of the architecture, a large neural network built as an
encoder-decoder architecture. The encoder is a large, pre-trained language model (based on
transformers like BERT or BART) which aims to understand the natural language question.
The decoder takes the output of the encoder and synthesizes a query step by step using a
recurrent neural network. The output of the decoder is not SQL, but an intermediate,
semantic query language (SemQL), which aims to abstract from some technical details of SQL
(e.g., filters modeled by “WHERE” or “HAVING”, a technical detail never specified by a user).

13 In a zero shot setting, ValueNet has never been trained on the project database before, but just
applies it’s knowledge learned on general open-source datasets.

Page 15 of 85

D3.2 – Second Component Release

The post-processing step then translates the intermediate language (SemQL) into SQL. This
translation is, in contrast to the encoder-decoder stage, a deterministic process. SemQL can
get translated not only to SQL, but to any structured query language similar to SQL (e.g.,
SPARQL).

Bio-SODA14 is a question answering system over domain knowledge graphs, in particular
over RDF graph databases. The strength of Bio-SODA is that it uses a generic, graph-based
approach, in order to answer natural language questions. Therefore it is
domain-independent and does not require prior training data in order to be adapted to a
new dataset.

Within INODE, we applied Bio-SODA to the CORDIS and SDSS databases, made available as
virtual knowledge graphs through Ontop (for details see Section 1.1, Integrated Query
Processing). We illustrate the question answering pipeline through the following example -
consider the question: “What are all spec galaxies with right ascension < 130 and declination
> 5?”15. The answering pipeline of Bio-SODA is explained below.

First, the main concepts in the questions are identified by a lookup against an inverted index
over the RDF data. In this simple example, Bio-SODA will identify one (unambiguous)
candidate match per concept, namely the entity: “Spec Galaxy”, as well as the properties
“right ascension” and “declination”, shown in Figure 1.3 below. Bio-SODA also detects two
numerical filters to be applied to these properties, based on the comparison operators used
in the question. For now, we support basic numerical operators, such as “>”, “<”, “=”, “>=”, or
“<=”.

Figure 1.3: Example question and candidate matches in Bio-SODA.

In the second step, the system computes the minimal connected subgraph that covers all the
candidate matches. In this case, the minimal subgraph contains only the class “SpecGalaxy”
and its directly connected data properties, “right_ascension” and “declination”. In the final
step, Bio-SODA constructs the corresponding SPARQL query based on this subgraph, applying
also the two filters mentioned in the question. The resulting SPARQL query is executed
against the SPARQL endpoint of SDSS and selected results are then presented to the user in
tabular form, as illustrated in Figure 1.4.

15
“spec galaxy” denotes a galaxy that has spectroscopic data available in SDSS.

14
Ana Claudia Sima, Tarcisio Mendes de Farias, Maria Anisimova, Christophe Dessimoz, Marc Robinson-Rechavi, Erich Zbinden and Kurt

Stockinger, “Bio-SODA - A Question Answering System for Domain Knowledge Graphs”, under review at the Semantic Web Journal

Page 16 of 85

D3.2 – Second Component Release

Figure 1.4: Example SPARQL query and selected results.

It is important to note that the properties “right_ascension” and “declination” used in the
RDF graph, close to the terms used in the NL query, occur under different (and less explicit)
names in the original SDSS database (“ra” and “dec”, respectively). The mapping between the
names used in the RDF graph and the attribute names in the source database is provided by
the OpenDataLinking service of INODE.

1.3.2 Pipeline Operators

We are given a relational database that we represent as a set of records. A new set of records
could be obtained by joining multiple tables using different exploration operators. The
exploration operators we formulated in our pipeline are instances of by-example. In its
general form, by-example takes an example set D of items and returns one or several sets

of items that are related to items in D by some interpretation. We here recall the𝐷'
interpretations and equivalent SQL queries for operators: by-superset, and
by-facet, and by-overlap.

Exploration operator by-superset. This operator takes a set D of items and a set A of
attributes and returns the smallest superset of D that preserves the values of attributes in A.
The corresponding SQL is: SELECT FROM D WHERE PA

The algorithm for implementation of by-superset can be summarized as: receive input
D (a set of items), and A (a set of attributes). Then, put in the most overlapping set with𝐷'
D. And then, take the next set and put it in S. As long as the time limit is not exceeded and
the overlapping threshold is not crossed, browse sets S, and each time replace by S, if the𝐷'
following conditions are satisfied: S is smaller than , then input set D is included in S and𝐷'
values of attributes in A are preserved.

Exploration operator by-facet. The operator by-facet(D, A) takes a set D of items
and a set A of attributes and returns as many subsets of D as there are combinations of

Page 17 of 85

D3.2 – Second Component Release

values of the attributes in A. This is akin to faceted search where k is dictated by the number
of combinations of values of the attributes in A.

The SQL expression for by-facet is: SELECT FROM D GROUPBY A*

The algorithm for implementation of the by-facet operator can be summarized as: split
the input set to several subsets by taking input D (a set of items), A (a set of attributes), and
k (the number of result subsets, returned in). by-facet is equivalent to the SQL𝐷'
operator group by. So we use a group by, then we take the k largest sets.

Exploration operator by-overlap. This operator takes a set of items and returns sets𝐷 𝑘
of items in such that each set , overlaps the least with and overlap𝐷 𝐷

𝑖
𝑖 = 1 . . . 𝑘 𝐷

between those sets is minimized.

The operator by-overlap is a composition of by-superset and by-subset. In SQL,
it takes a set D of items to which is associated a conjunction of predicates, and finds an𝑃
overlapping set of items that contains some items satisfying obtained by dropping one𝐷' 𝑃'
conjunct in and some items satisfying obtained by modifying (either by dropping𝑃 𝑃'' 𝑃
conjuncts and keeping at least one conjunct per attribute, or by adding a new conjunct).

The SQL expression is as follows:

SELECT FROM D, d WHERE* 𝑃' 𝑑()

SELECT FROM , d WHERE* 𝐷'' 𝑃'' 𝑑()

The by-overlap operator is implemented with a greedy algorithm. The algorithm for
implementation of the by-overlap operator can be summarized as: receive input D (an
input set of items), k (the number of overlapping sets we must return), tlimit (a time limit
and (a threshold that represents the maximum overlap between a result set and D). First,µ
we use the index to put in the k sets that overlap the least with D. Then, we take the next𝐷'
set s, and as long as the time limit is not exceeded, and the overlap threshold is not crossed,
we update , if s satisfies | overlap(\) + s | < | overlap() |𝐷' 𝐷' 𝑠' 𝐷'

The operators: by-superset, by-facet, and by-overlap are integrated in
INODE-SQL 2.0.

Considerable effort was invested into switching the pipeline operators from an “in-memory”
data back-end with pre-computed list of sets and set indexes, to a more generic and common
SQL back-end. This change allows the use of the pipeline operators with any SQL database,
without any adaptation, making them more generic and versatile.

As part of future work we will improve the implementation of by-overlap to work
without the pre-computed set indexes. Moreover, two more operators allowing similar jumps
through the data-space were developed: by-neighbors and by-distribution.
The semantics of these operators is provided in Section 4.1.3. We provide a screenshot of
their API documentation and of their application on SDSS.

Operator by-neighbors. The by-neighbors operator exploits the ordinal attributes,
i.e., the attributes with an intrinsic order (binned numerical values, discrete numerical

Page 18 of 85

D3.2 – Second Component Release

values, dates, times). The user provides a list of such attributes and an input set, and the
operator returns the sets whose values for the input attributes are in the neighborhood of
the values in the input set.

This operator allows the user to explore the data adjacent to a given place in space (the input
set), by changing one dimension above and below and keeping the others constant.

Operator by-distribution. The by-distribution operator uses the same
“ordered” attributes as by-neighbors, but instead of looking for neighbors on a given list
of attributes, it takes all the ordered attributes in the input set description, and finds all the
sets having the same difference between each ordered attribute.

This operator allows the user to find other sets showing the same relations between the
attributes as the example. It allows the exploration of remote places of the dataspace while
keeping a similarity to the example.

1.4 User Assistance

1.4.1 Explanations

Progress within INODE. In INODE Release 1.0, Logos was used to translate SQL queries from
SODA and Nalir+ into natural language. Logos is a so-called SQL-to-NL service. In the current
release INODE-SQL 2.0, Logos is extended to translate the SQL queries produced by
ValueNet, as well as to translate the output queries of the data exploration pipelines. At
present, Logos supports natural language explanations for both CORDIS and SDSS databases.

In what follows, we show the improvements of Logos per category, giving examples.

Improvements in terms of query semantics. The current version of Logos includes mainly
grammatical changes. Those changes were made not only for the system to be compatible
with other systems as well (e.g., Nalir+, SODA, etc.), but also to further develop Logos
capabilities of translating SQL queries that are more demanding (in terms of translation).

The newly developed extensions enabled Logos to support the following query types:

select top – limit clauses

CORDIS query example (select top):
SELECT TOP 10 * FROM projects WHERE projects.title LIKE
'%theseus%';

Translation: Find everything about projects whose title is like %theseus%. Limit the
results to top 10.

SDSS query example (limit):
SELECT specobjid FROM specobj WHERE class = 'STAR' and
zwarning = 0 LIMIT 100;

Page 19 of 85

D3.2 – Second Component Release

Translation: Find spectroscopic objects whose class is STAR and redshift warning is 0.
Limit the results to top 100.

not like operator

CORDIS query example:
SELECT * FROM projects WHERE ec_fund_scheme NOT LIKE
'%MSCA-IF-EF%';

Translation: Find everything about projects whose fund scheme is not like
%MSCA-IF-EF%.

in – not in operators

CORDIS query example:
SELECT total_cost, ec_max_contribution,
framework_program, ec_fund_scheme
FROM projects WHERE framework_program IN ('FP7') AND
ec_fund_scheme NOT IN ('ERC-SG', 'CP-SoU');

Translation: Find the total costs, max contributions, framework programs and fund
schemes of projects whose framework program is in {FP7} and fund scheme is not in
{ERC-SG, CP-SoU, MC-IAPP, ERC-CG}.

projections including "count(*)"

CORDIS query example:
SELECT COUNT(*) FROM projects WHERE start_year = 2012;

Translation: Find the cardinality of projects whose start year is 2012.

Improvements in terms of translation. Another important addition to our latest release is
the annotated database graph (see Section 5). This feature enables the generation of more
natural, human-like translations.

CORDIS query example:
SELECT p.full_name FROM people p, projects pr
WHERE pr.principal_investigator = p.unics_id;

· Logos v.1: Find the full names of people associated with projects.

· Logos v.2: Find people that are principal investigators of projects.

SDSS query example:
SELECT n.* FROM neighbors n, photoobj p
WHERE p.objid = n.objid AND p.b = 1.072 AND p.l =
174.535;

· Logos v.1: Find everything about neighbors associated with photoobj
whose b is 1.072 and l is 174.535.

Page 20 of 85

D3.2 – Second Component Release

· Logos v.2: Find everything about nearest neighbors of photometric
objects whose galactic latitude is 1.072 and galactic longitude is 174.535.

Moreover, specific attributes from relations have been chosen to serve as representatives of
their corresponding relations. We call these attributes heading attributes and when
appearing in the SELECT-part of a query, the way of producing the natural language
explanation changes, giving a more natural result.

CORDIS query example:
SELECT title FROM projects WHERE start_year > 2018;

· Logos v.1: Find the titles of projects whose start year is
greater than 2018.

· Logos v.2: Find projects whose start year is greater than 2018.

SDSS query example:
SELECT specobjid FROM specobj;

· Logos v.1: Find the specobjids of specobj.

· Logos v.2: Find spectroscopic objects.

Working with the CORDIS database, we noticed that some relations were used only to
connect other relations (bridge tables), storing indices. Manually reported, those relations
are excluded from the translation procedure.

CORDIS query example:
SELECT pr.title FROM projects pr, project_subject_areas
psa, subject_areas sa
WHERE pr.unics_id = psa.project AND psa.subject_area =
sa.code AND sa.title = 'Robotics';

· Logos v.1: Find the title of projects, for projects associated with project
subject areas, and for project subject areas associated with subject areas
whose title is robotics.

· Logos v.2: Find projects on subject areas whose title is robotics.

1.4.2 Recommendations

Generating query recommendations in INODE-SQL 2.0 leverages the query capabilities of
PyExplore. PyExplore16 is a data exploration tool aimed at helping end users formulate
queries over new datasets. PyExplore takes as input an initial query from the user along with
some parameters and provides interesting queries by leveraging data correlations and
diversity. It is able to handle datasets with mixed numeric and categorical attributes.

16 A. Glenis, G. Koutrika. PyExplore: Query Recommendations for Data Exploration without Query Logs.
ACM SIGMOD, 2021

Page 21 of 85

D3.2 – Second Component Release

As input to PyExplore, we consider a query of the form:

SELECT A FROM T WHERE P

where T is a set of tables joined for the query, A is a subset of the table attributes projected
in the query result, and P is a conjunction of selection predicates.

PyExplore then produces a set of ranked queries with an augmented WHERE-clause if there
was a WHERE-clause in the initial query or a new WHERE-clause if there was no
WHERE-clause.

The first step of the recommendation process is to find ‘interesting’ subsets of query
attributes. PyExplore leverages two notions: attribute correlation and diversity.

● Correlation-based. Correlation is the measure of how two features are correlated. For
example, the month-of-the-year is correlated with the average daily temperature, and
the hour-of-the-day is correlated with the amount of light outdoors. Data scientists are
interested in correlated attributes to highlight relationships between attributes of the
data set.

First, PyExplore computes the correlation of each pair of attributes in the query results.
One challenge is how to deal with different types of attributes. For comparison between
numerical attributes, it uses Pearson correlation17, for categorical-categorical, it uses
Cramér's V 18, and for categorical-numerical, it uses Correlation Ratio19. To make all
correlation metrics in the same range, i.e., [0, 1], we take the absolute value of the
Pearson Correlation. Then, the inverse of the absolute value of the correlation matrix is
used as a distance matrix, which is given as input to a clustering algorithm that creates
clusters of correlated attributes.

PyExplore uses two options for clustering correlated attributes: (a) hierarchical
clustering20 with complete linkage takes as input the maximum number size_max of
attributes per cluster and decides the number of clusters accordingly, and (b) OPTICS21,
which is a density-based algorithm that decides how many clusters to create and also
clusters all outliers together. This cluster with outliers is ignored by the recommendation
algorithm.

● Diversity-based: Intuitively, an attribute that has a diverse set of values is interesting
because it allows the user to explore a larger part of the initial query results compared
to a less diverse attribute. To compute diversity for numerical columns, PyExplore uses
the normalized Shannon entropy. For categorical columns, it computes the ratio
between the unique values in the column and the total rows in the column. Then,
subsets of diverse attributes up to a size_max size are generated in a greedy manner.

Note that both correlation and diversity are computed on-the-fly on the results of the initial
user query.

21 Ankerst, Mihael et al,OPTICS: Ordering points to identify the clustering structure

20 https://en.wikipedia.org/wiki/Hierarchical_clustering

19 https://en.wikipedia.org/wiki/Correlation_ratio

18 https://en.wikipedia.org/wiki/Cram%C3%A9r%27s_V

17 https://en.wikipedia.org/wiki/Pearson_correlation_coefficient

Page 22 of 85

D3.2 – Second Component Release

The query recommendation process generates the queries using clustering to find interesting
subsets of the data, and then feeds the results of the clustering into a decision tree classifier
to obtain the rules for producing the queries.

Result Clustering. For each subset of attributes identified by the first step, PyExplore clusters
the initial query results using the values of the attributes in the subset. It uses two options.

The first is K-means with scaling and encoding categorical values as dummy variables.

However, encoding categorical values as dummy variables can lead to increased time and
space complexity for data sets with high-cardinality categorical values. To overcome this
problem, PyExplore uses K-modes. Specifically, to enable the clustering of categorical data
in a fashion similar to k-means, the algorithm proposed by Huang (1997)22 uses a simple
matching dissimilarity measure, replaces the means of clusters with modes, and uses a
frequency-based method to update modes in the clustering process to minimise the
clustering cost function. The algorithm proposed by Huang (1998)23, through the definition of
a combined dissimilarity measure, further integrates the k-means and the algorithm
presented by Huang (1997) to allow for clustering objects described by mixed numeric and
categorical attributes.

Query Generation: For each subset, the resulting cluster labels are fed into a decision tree
classifier to produce the split points of the data. The resulting split points are used to create
the recommended SQL queries.

More concretely, PyExplore traverses the decision tree from the leaves up to the root, and
for each path from the starting leaf to the root, it generates an output query. The conditions
of the WHERE clause of each query describe the cluster boundaries as they are described by
each path in the decision tree. Since PyExplore uses clustering to obtain partitions of the
data space, it leverages clustering quality metrics to obtain a ranking of the produced
recommended queries. Specifically, it uses density as a quality metric for clustering. Higher
density score is better, meaning that the respective query describes a very dense area of the
data.

The following example shows the recommendations of the running query on the CORDIS
dataset (see Figure 1.5):

CORDIS query example:
SELECT total_cost, ec_max_contribution,
framework_program, ec_fund_scheme FROM projects;

Recommendations:
Here we see that framework_programe and ec_fund_scheme are correlated and
form a view. We see that the recommended queries propose values for funding
schema that make sense such as “FP7” and “H2020”.

23 Zhexue Huang. Extensions to the k-means algorithm for clustering large data sets with categorical
values. Data Mining and Knowledge Discovery 2(3): 283-304. 1998.

22 Zhexue Huang. Clustering large data sets with mixed numeric and categorical values. In Proceedings
of the 1st Pacific-Asia Conference on Knowledge Discovery and Data Mining. 1997. DOI:
10.1.1.94.9984.

Page 23 of 85

D3.2 – Second Component Release

Figure 1.5: Recommendations for a CORDIS query.

The following screen shows the recommendations of the query on the SDSS dataset (see
Figure 1.6):

SDSS query example:
SELECT objid,ra,dec FROM photoobj LIMIT 10000;

Page 24 of 85

D3.2 – Second Component Release

Figure 1.6: Recommendations for an SDSS query.

As we can see objid and ra are correlated and form a view. We can also see that the
recommendation system choses some interesting values as split points for ra and dec.

1.5 Multi-Modal Discovery

The goal of the Multi-Modal Discovery layer is to implement means for result exploration and
follow-up operator execution. In doing so, it seeks to help users understand the options they
have for finding the data they need through ​visual exploration of results at each exploration
step and ​interactive manipulation and optimization of exploration operators.

Visual exploration of intermediate results aims at enabling users to visually manage the
actual content. When necessary, users can revise their exploration steps through interactive
manipulation and optimization of exploration operators.

Progress within INODE. Work on visual guidance and exploration of search results as well as
interactive manipulation and optimization of queries has been continued and work to
accommodate for the integration requirements has already been started. In summary, many
minor changes have been implemented since the INODE 1.0 release, consolidating and
streamlining the Multi-Table Explorer user experience as well as the code base in preparation
for OpenDataDialog 3.0. Noteworthy changes to the previous release (described in D3.1) are
described below.

1.5.1 Visual Result Exploration

Relevance-based column ordering. The SDSS data set often results in tables with 500
different columns, which, for example, represent various measurements and parameters
recorded during sky observations. To ease overview and navigation, columns are now
ordered by relevance, putting the important columns to the left of the Multi-Table Explorer

Page 25 of 85

D3.2 – Second Component Release

view while less relevant columns are sorted to the right. This should, on average, reduce the
need to scroll horizontally. In this release, the relevance of columns is increased based on
interviews with the use case providers, only. However, the system is already prepared to
apply more complex relevance measures in a future release, for example to integrate the
correlation-based or diversity-based measures described in Section 1.4.2 Recommendations.
Ongoing (non-integrated) work for arranging and structuring search results will be presented
in Deliverable D3.3.

Improved information density. To maximize the information conveyed to the user, the
resolution of histograms has been increased, data type meta information is available as a
tool tip, axis labels have been added, and popup menus have been redesigned to save space.
A comparison of the previous and the current release is given in Figure 1.7.

Figure 1.7: Comparing the upper to the lower image, a higher data-ink-ratio as well as less
wasted screen real estate can be observed, while columns are still distinguishable from each

other.

Table overview information. We now include meta information provided by our partner
services into the Multi-Table Explorer view, for example, the width and height of the table,
but also the natural language explanation as well as its accompanying SQL statement. Also,
we added pagination to enable the user to view excerpts of interesting tables.

Page 26 of 85

D3.2 – Second Component Release

Figure 1.8: (A) provides relevant meta information about a result, such as its NL
representation, width and height of the fetched result, and other information. (B) shows

overview information about various columns. The user can toggle the display of (C) to browse
through the actual table rows on demand.

Support for more data types. Besides numerical (integer, double) and categorical (string)
data types, the Multi-Table Explorer now supports image URLs as a separate data type (as
needed for the SDSS dataset, see Figure 1.9). On the one hand, it serves as a validation that
new data types can be added and, on the other hand, is an intermediate step to integrate the
galaxy explorer app prototype which demoes by-distribution and by-neighbors
operators.

Figure 1.9: URL columns show a small preview of a random set which fits the size constraints
for columns (top left of the image), but also shows a large tooltip with more and larger

previews if the user hovers over it.

Page 27 of 85

D3.2 – Second Component Release

1.5.2 Visual Query Manipulation

As new services for exploring and interacting with the data have been added, we extended
the table explorer to trigger these actions. This includes the ability to explore by
recommendations (see Figure 1.10 (left)) and to refine a natural language query based on a
selected table result (see Figure 1.10 (middle)). Some advanced techniques, for example,
explore-by-neighbors, support only specific data types, but implementation of those
constraints has been postponed after M18.

Figure 1.10: (left) new operators ‘ Explore by recommendation’ , ‘Explore by natural
language’ and an ‘Give feedback’ action have been integrated. (center) If a user clicks

‘Explore by natural language’, they can adapt the natural language query to suit their needs
in a modal. (right) Also, users can provide relevant feedback if a search result suits their

needs or not.

1.5.3 Integrated seamless query-response loop

Originally, Task 7.3 was scheduled to begin by M13, but we started earlier to enable
integration of our partners’ operators where they semantically fit into the application. Most
of the work has already been shipped in OpenDataDialog 1.0. However, performance
improvements have been integrated as part of this task. As users expect to have a fluent
experience when surfing the web, we took measures to reduce the time to first contentful
paint on the front end. One issue was that rendering hundreds of histograms, tables and
other information introduced performance issues on mid-range and low-end computers. We
reduced this by limiting the initial view to the most important columns first. The users are
still able to select whatever they are interested in, or even display all information available.
This improvement does not mitigate server-client related loading times but increases the
snappiness of the application.

1.6 Evaluation

In order to implement the evaluation of the INODE system (WP8), it is necessary to design a
logging mechanism first, so that we can record various system-generated events. In this
version of the INODE system, we developed a logging mechanism that records various system
parameters. Therefore for WP8, we completed Deliverable 8.1 (defining quantitative
measures for our system), Deliverable 8.2 (evaluation report on the quantitative measures
for our systems), and outline plans for Deliverable 8.3 (design of study for qualitative
evaluation part).

Page 28 of 85

D3.2 – Second Component Release

As the main goal is system evaluation, we present our work related to:

1. methodology to extract & report the evaluation parameters (covers Deliverable 8.1)
2. set of quantitative evaluation parameters (covers Deliverable 8.2)
3. methodology to mathematically analyse the extracted evaluation parameter (covers

Deliverable 8.3 - partially).

1.6.1 Logging of system parameters

System evaluation requires analysis of various system factors. So as a first step, it is necessary

to come up with a technique to extract and then record these parameters from the INODE
system. We have implemented a dedicated (separate) logging mechanism for recording the
evaluation parameters during each user session. We design our dedicated logging
mechanism with features such as:

● The logging mechanism structure is kept flexible so as to easily deal with the addition
of new evaluation parameters.

● The logging mechanism assigns a user ID to each user session and stores it as a web
cookie, thus ensuring identification of the same users across multiple sessions.

● Logs are JSON objects with predefined log structure, which can be parsed easily using
various python libraries.

● The logging mechanism ensures no delays in recording user events by requesting
time stamps from the frontend.

Log entries are recorded by means of calls to a logging API. The calls to this API are issued at
the moment from the integration layer, which corresponds mainly to our INODE
OpenDataDialog 2.0 application (the main interface for users to interact with INODE-SQL
2.0). The integration layer also includes a couple of wrapper services, namely the NL-to-SQL,
i.e., SODA and ValueNet, and SQL-to-NL (i.e., Logos) services. These provide a REST API to the
underlying tools. In the case of NL-to-SQL, the Nalir+ and SODA systems are executable Java
applications that communicate via their standard input and output, so a wrapper is required
to give them a REST API. ValueNet already has such an API, but in order to homogenize it
with the API for Nalir+ and SODA developed in the previous release (INODE-SQL 1.0), we
have also assigned its management to the NL-to-SQL service. In this case, the NL-to-SQL
wrapper acts as a proxy, translating a request directed towards the common NL-to-SQL API
into a request directed towards the specific ValueNet API. Similarly, the SQL-to-NL service
provides a REST API to the Logos tool, which is a Java library.

The OpenDataDialog frontend logs user interactions, such as mouse clicks. The backend side
of the application logs the inputs, outputs, and latency of the Recommendations and Pipeline
Operator APIs (both of which are called from the OpenDataDialog’s backend). The two
wrapper services log, similarly, the inputs, outputs, and latency of the NL systems and Logos
tool, respectively.

The architecture of the logging mechanism for INODE is shown in Figure 1.11. The term
“container” in the architecture figure denotes a docker container, since the different
services/components of INODE-SQL 2.0 are deployed as docker containers. The logging API is
also deployed in its own docker container. This architecture includes the possibility to call the
logging API from within the Recommender and Pipeline Operators services, so as to record

Page 29 of 85

D3.2 – Second Component Release

parameters that can only be measured internally, even though these services are not directly
calling the logging API in the present release.

Figure 1.11: System architecture for logging mechanism for INODE system.

1.6.2 Quantitative evaluation parameters

Once the logging mechanism is in place, the next thing is to record certain system
parameters to produce quantitative measures for system evaluations. Currently we extract
the evaluation parameters shown in Table 1.3 from our logs.

Parameter Description

1 Session start time Timestamp at which the users start using the session.

Page 30 of 85

https://docs.google.com/document/d/1qbvzB3up2iuWt96ZOKu5azY2xB65cYL7PyWJDPsA2VY/edit?ts=5fcfd03e

D3.2 – Second Component Release

2 Session stop time Timestamp at which the users stop using the session.

3 Pool of operators Recording the pool of operators that each participant
utilized during the experiment.

4 UI objects Recording clicks on a fixed set of objects (only UI objects),
that the user initiates.

5 Query Execution start
time

Time at which the query execution is started (e.g., after NL
to SQL query translation).

6 Query Execution end
time

Time at which the query execution is ended (e.g., NL to SQL
query translation).

7 Query Execution
Latency

Time taken for query execution measured at the backend
(e.g., after NL to SQL query translation).

8 Questionnaire Output Recording each participant's responses to the
questionnaire, at the end of the session.

Table 1.3: List of evaluation parameters that are recorded to perform quantitative and
qualitative system evaluation.

1.6.3 Data analysis

Now that the evaluation parameters are available, the next part is to analyze these
parameters extracted for each user by applying statistical methods. This section outlines the
methodology that we will use to evaluate our set of operators by using data from user
feedback and statistical analysis.

For the purpose of user-driven pipeline evaluation, our goal is to understand the effects of
user perceived feelings of Accomplishment, Effort, Mental Demand, Controllability, and
Temporal Demand. Our main motivation is to understand the following:

● What number of interactions (more or less) is better for a user's perceived overall
satisfaction?

● Which set of operators are required to achieve user perceived satisfactory results?

Two factors are considered, namely exploration operators (a set of all operators S vs S’ with
one less operator) and interventions allowed for the user (upper bound: N/2 times vs N
times). Refer to Section 1.3.2 for a definition of exploration operators. All other factors are
kept constant for all experiments, namely dataset, AI algorithm, exploration platform,
dimensions to group on etc. The use case under study is to find various types of galaxies from
the SDSS dataset. At the end of the session, the user feedback is collected from a
questionnaire designed to record the effects of user perceived feelings of Accomplishment,
Effort, Mental Demand, Controllability, and Temporal Demand. The data from this
questionnaire will be used to create split plots that will allow us to give insights into which

Page 31 of 85

https://docs.google.com/document/d/1qbvzB3up2iuWt96ZOKu5azY2xB65cYL7PyWJDPsA2VY/edit?ts=5fcfd03e
https://docs.google.com/document/d/1qbvzB3up2iuWt96ZOKu5azY2xB65cYL7PyWJDPsA2VY/edit?ts=5fcfd03e

D3.2 – Second Component Release

operators work better for subsetting a given data set, in order for the user to properly
explore and reach the final dataset.

2 INODE-SQL 2.0 IN ACTION

2.1 OpenDataDialog

In this section we will demonstrate the services of INODE-SQL 2.0 based on the two datasets
of CORDIS (policy research) and SDSS (astrophysics). We adapt to the typical flow of the web
application: Starting from scratch, the user enters a natural language query which is
interpreted by up to three NL-to-SQL operators. As multiple SQL translations result from this,
the user then assesses the multiple results by investigating the data with the Multi-Table
Explorer, which includes SQL-to-NL translations of the results. Then, the user continues to
explore the data with the help of the by-recommendation operators as well as the new
pipeline operators.

2.1.1 NL-to-SQL: Translating Natural Language Questions to SQL

NL-to-SQL has been enhanced in this release. We first demonstrate ValueNet on the CORDIS
use case and afterwards demonstrate SODA’s capabilities on the astrophysics use case.

2.1.1.1 Querying CORDIS in NL with ValueNet

For this release we apply ValueNet to the CORDIS data. As ValueNet requires a GPU-enabled
infrastructure to run its large neural network, it is hosted outside of INODE-SQL 2.0 in the
ZHAW GPU Cloud. Due to the robust API design of INODE-SQL 2.0, integration of ValueNet as
an outside REST service did not require any additional effort.

ValueNet can now be selected as a new system in the INODE OpenDataDialog 2.0 settings
(see Figure 2.1).

Figure 2.1: The landing page of INODE-SQL 2.0 shows ValueNet as NL-to-SQL translation
system for the CORDIS database.

We start exploring ValueNet by asking the question “Find projects that started before 2016”.
ValueNet synthesizes the correct SQL “SELECT * FROM projects AS T1 WHERE
T1.start_year < 2016” and the INODE OpenDataDialog displays the data as
expected (see Figure 2.2).

Page 32 of 85

D3.2 – Second Component Release

While this question is not especially complex, it still requires a certain knowledge to
synthesize the correct SQL: The word “started” is referring to the column “start_year”,
“before” should get translated to the “<” operator and the simple mentioning of “projects” is
referring to “SELECT *”. All this knowledge is learned by ValueNet from scratch during
training on a publicly available data corpus.

Figure 2.2: ValueNet interpreting the question “Find projects that started before 2016” on the
CORDIS database.

The next question we ask ValueNet is “Show the name of members in projects costing less
than the average project cost.“ (see Figure 2.3) which ValueNet synthesizes correctly into:

SELECT T1.member_name
FROM project_members AS T1

JOIN projects AS T2 ON T1.project = T2.unics_id
WHERE T2.total_cost < (SELECT AVG(T23.total_cost) FROM
projects AS T23);

This query has a much higher complexity than the first one: it contains a JOIN between two
tables, an aggregation function (AVG) on a numeric column and a nested query which is
indeed necessary for the question at hand.

It is interesting to see that ValueNet correctly understands the sub-sentence “...costing less
than the average”. It has learned this knowledge from somewhat similar questions on
different databases and is now able to correctly generalize on the CORDIS schema.

Page 33 of 85

D3.2 – Second Component Release

Figure 2.3: ValueNet interpreting the question “Show the name of members in projects
costing less than the average project cost.“ on the CORDIS database.

The last example we test ValueNet on is “Show me the acronym of projects with a duration of
more than 5 years.”. ValueNet incorrectly synthesizes the query:

SELECT T1.acronym FROM projects AS T1 WHERE T1.end_year > 5

(see Figure 2.4).

When analyzing the query we see it is correct except for the fact that “duration” got
translated to “end_year”. Here, the model lacks the knowledge that “duration” represents
a time span, which needs to be calculated by subtracting the start from the end year. We
expect the model to be able to synthesize such queries correctly by adding more explicit
training data or by explicitly enriching the ontology with concepts such as duration.

Figure 2.4: ValueNet interpreting the question “Show me the acronym of projects with a
duration of more than 5 years.“ on the CORDIS database.

2.1.1.2 Querying SDSS in NL with SODA

For INODE-release 1.0, SODA was applied to the CORDIS data. For the latest release, i.e.,
INODE 2.0, SODA has been configured to work with the SDSS data. Due to our stable API

Page 34 of 85

D3.2 – Second Component Release

design, no new functionality was needed to add to SODA for this software release. The
landing page of SODA configured with SDSS is shown in Figure 2.5.

Figure 2.5: The landing page of INODE-SQL 2.0 shows SODA as an NL-to-SQL translation
system and the newly added SDSS database.

For the following natural language question “Show all objects in photoobj”, SODA returns the
correct SQL query, “SELECT * FROM photoobj” (see Figure 2.6).

Figure 2.6: The landing page of INODE-SQL 2.0 shows the NL query “Show all objects in
photoobj” for the SDSS database as well as the SQL interpretation returned by SODA.

The following natural language question “Find all objects with right ascension greater than
100” can be answered by SODA in a keyword question format, “ra > 100 photoobj”.
SODA returns the correct query in the list of possible interpretations (see Figure 2.7).

Page 35 of 85

D3.2 – Second Component Release

Figure 2.7: SODA keyword query “ra > 100 photoobj” for SDSS database.

From all of the information, which SODA took as input in the previous two examples, it was
able to produce correct SQL queries. However, SODA currently cannot handle queries that
contain information from two or more tables that have columns of the same name, which is
common across the 5 tables of the SDSS database. For example “Find all photometrically
observed galaxies with right ascension greater than 100 and declination less than 100”,
which corresponds to the following SODA keyword query “Photoobj ra > 100 dec
< 100”. Here, SODA does not return the correct query, which should only contain elements
from a single table, photoobj, rather than queries with joins to another table in the
database (see Figure 2.8).

Figure 2.8: Incorrectly returned interpretation for the keyword query ‘’Photoobj ra >
100 dec < 100”. In the upper result, the NL explanation provides a valuable hint why this
might be the case: “... whose decerr is less than 100”. Furthermore, the histograms of column

4 (photoobj ra) indicate that the “ra > 100” condition has been ignored.

Page 36 of 85

D3.2 – Second Component Release

In order to mitigate this problem, the domain ontology of the SDSS dataset will be enriched
with additional semantic information about objects in the sky.

2.1.2 SQL-to-NL: Explaining SQL Queries Using Natural Language

Logos has been improved to generate better explanations for the CORDIS data as we
explained in Section 1.4.1, compared to the earlier version of INODE. In the current version,
we have enabled explanations for SDSS queries. Furthermore, NL explanations now appear in
several places on the UI (a) to help the user understand which queries were generated for a
user NL query as well as (b) to explain the queries executed by the pipeline operators, hence
offering a better user experience.

We will show examples of how it works with SDSS queries.

Let us assume that we want to address the query “Find all photometrically observed stars”
against the SDSS database. By clicking the gear button (see Figure 2.5) , a menu appears that
enables the user to choose between the available NL to SQL translation systems and
databases (CORDIS, SDSS), as well as to pick the desired number of interpretations and
results per interpretation (tuples). For the SDSS database, the available system is SODA.

In addition, let us say that we want only two interpretations produced by the system SODA
and only 10 tuples to be retrieved for these produced queries. We continue by typing the NL
query we want to submit, in this case “photoobj type = 6” where type 6 corresponds to
photometric objects which are stars.

Once submitted, the interpretations returned by the INODE system are those depicted in
Figure 2.9. Each interpretation refers to a different query produced by the SODA system. One
of those queries is possibly the one we are looking for. Certainly, that query is the first one
“Find everything about photometric objects whose object type classification is 6”.

Figure 2.9: Returned interpretations.

Page 37 of 85

D3.2 – Second Component Release

One may ask more about each of the produced interpretations. For instance, let us say that
we want to explore more about the query under study (first query retrieved by the system).
The only thing we have to do is to press the pointing-down arrow and afterwards continue by
pressing the three dots button. A menu showing the available exploration operators is shown
to the user (see Figure 2.10).

Figure 2.10: Operators menu.

For any pipeline operator (e.g., by-recommendation, etc.) the process is the same. Assuming
that we want to explore by superset, we press the corresponding button and we get the
following explained query (see Figure 2.11).

Figure 2.11: Interpretation returned using the by-superset operator.

Page 38 of 85

D3.2 – Second Component Release

Undoubtedly, the set containing all the photometric objects is a superset of the set
containing only the photometric objects that are stars.

2.1.3 Recommending Queries (PyExplore)

The figures below, show where the query recommendations appear on the INODE user
interface. Pressing the pointing-down arrow and the three dots button, we can select from
the menu the option to see recommendations based on data correlations that are generated
by PyExplore.

Figure 2.12: Selecting the by-recommendation operator.

Figure 2.13: Recommended queries for projects with start year less than 2018.

Page 39 of 85

D3.2 – Second Component Release

Figure 2.14: Recommended queries for projects with start year greater than 2018.

2.1.4 Pipeline Operators

The following screenshots are from the “Galaxy exploration app”, since the operators could
not be integrated in the current OpenDataDialog 2.0 release. First steps towards integration
have been undertaken however, for example the support to image URL data types as seen in
Section 1.4.

In this app, the data is composed of 2.6M galaxies with 10 continuous numerical attributes
binned in 10 equal depth bins.

Page 40 of 85

D3.2 – Second Component Release

Those attributes have an intrinsic order allowing us to use by-neighbors and by-distribution:

● By-neighbors

Figure 2.15: Selection of the input subset (on the left hand side), the by-neighbors operator
(in the drop-down menu on the right side), and the dimension to use (magnitude g).

The astrophysicist using the application finds a set of interests during their exploration. The
set is described by two ranges of values: on the magnitude (on the spectrum range) ‘u’ the
values are filtered between 20.095 and 21.233, and on the magnitude ‘g’ between 18.384
and 19.341. The scientist would like to see sets with the same range of values on the
magnitude ‘u’, but slightly different values on the magnitude ‘g’.

They select the set, the by-neighbors operator and the magnitude ‘g’, and obtains the
following results:

Page 41 of 85

D3.2 – Second Component Release

Figure 2.16: The resulting sets, the input set in the middle, the set on the lower range on the
magnitude ‘g’ above, and the set on the higher range on the magnitude ‘g’ below.

The input set, plus two sets sharing the same range on the magnitude ‘u’, with the ranges
below and above on the magnitude ‘g’:

○ 17.752 -> 18.384
○ 19.341 -> 20.773

● By-distribution

The astrophysicist using the application finds a set of interests during their exploration. The
set is described by three ranges of values, on the magnitude (on the spectrum range) ‘u’ the
values are filtered between 21.233 and 22.228, on the magnitude ‘g’ between 18.384 and
19.341, and on the magnitude ‘i’ between 17.063 and 17.545. They find the relations
between the three magnitudes in this set interesting, and would like to see more sharing the
same relations to see if an interesting pattern appears.

Figure 2.17: The input set selected with the three magnitude ranges.

Page 42 of 85

D3.2 – Second Component Release

They select the set and the by-distribution operator, and obtain the following results:

Figure 2.18: The sets resulting from the use of the by-distribution operator.

Page 43 of 85

D3.2 – Second Component Release

The ranges describing the input set in the magnitudes u, g, and i were the third on u, the
second on g and the second on i. So we can simplify it as the following description: [3,2,2].

By-distribution has returned all the sets keeping the same difference between the range
indexes.

Hence the resulting sets [1,0,0], [2,1,1], [4,3,3], [5,4,4], [6,5,5], [7,6,6] , [8,7,7], and [9,8,8]
provide a wide range of very different galaxies to study.

2.1.5 Summary

We have demonstrated many of the new features within OpenDataDialog 2.0. It became
apparent that all operators, despite their complexity and variety, can be used from within
one single web application.

2.2 OpenDataLinking

In this section we will demonstrate the OpenDataLinking services of INODE-SQL 2.0 based on
several open datasets as well as on cancer research (OncoMX).

The OpenDataLinking component of INODE-SQL 2.0 introduces a set of improvements on the
triple extraction process as well as a unified extraction approach that relies on a triple
refinement algorithm implemented by ZHAW to efficiently consolidate the extracted triples
from both the ZHAW and the Infili engines. Our system encompasses a set of information
extraction methods to distill structured knowledge from unstructured text by identifying
references to named entities as well as stated relationships between such entities.

2.2.1 Triple Refinement

The need for a triple refinement method originated from the fact that a simple combination
of the outputs stemming from the precision-oriented ZHAW approach and the recall-oriented
Infili approach did not automatically yield optimal results. The triple refinement method is
based on a reverse implementation of the ZHAW dependency parsing approach for triple
extraction and can be explained with the following example from the CaRB development
set24:

Instead of having system calls specifically for process management,
Plan 9 provides the codice_13 file system.

A triple output by the Infili engine is as follows:

Plan 9 ; provides ; the codice_13 file system Instead of having system
calls specifically for process management

24 Sangnie Bhardwaj, Samarth Aggarwal, and Mausam. CARB: A crowdsourced benchmark for open IE.
In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the
9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). 2020.

Page 44 of 85

D3.2 – Second Component Release

This triple, while scoring well on recall, has low precision due to the unnecessary clause
Instead of having system calls specifically for process management.

On the other hand, the ZHAW engine often omits messy triples (i.e., triples stemming from
complex sentences, containing one or more uninformative/unnecessary clauses) entirely, in
order to preserve precision. By feeding the Infili triples back into the ZHAW engine, we can
gain new triples, but maintain precision. Hence, the idea of the combined system is to
increase both the recall and the precision of the triple extraction process.

The refinement algorithm marks the tokens from an extracted triple on the dependency tree
for that sentence. It then searches for the three head-words of the subject, predicate, and
object. These head-words are the roots of the largest connected components of the subject,
predicate, and object sub-trees. The three head-words are then fed into the ZHAW pipeline
to produce a modified triple.

In contrast, the ZHAW engine searches for these head-words itself, before expanding them
into full triples. However, since the ZHAW engine uses high-precision rules, many head-words
are not found with this method, and we leverage the high-recall Infili engine to find new
triples, then refine them. An example of this is shown in Figure 2.19.

Figure 2.19: Original dependency tree with old triple marked, and pruned dependency tree
with new refined triple marked.

Page 45 of 85

D3.2 – Second Component Release

The new triple is now:

(Plan 9 ; provides ; the codice_13 file system)

Compared to the output from the Infili engine, the subordinate clause Instead of
having system calls specifically for process management is discarded by the
triple refinement process.

Additional improvements were also implemented to ensure the seamless integration of the
triple refinement system with the OncoMX data. More specifically, the following settings
have been added to the ZHAW triple extractor and combiner, to adapt it to various use cases:

● enhanced_predicates: When this setting is enabled, the predicate contains
additional descriptive information, and the subject and object are simplified. This is
better suited to the OncoMX use case, since the predicate remains in plain text,
while the subject and object are mapped to ontologies. For example in the sentence:

Blood E2F3 mRNA levels were significantly higher in lung cancer
patients when compared to either patients with benign lung
diseases or healthy subjects.

The enhanced_predicates version is as follows:

(Blood E2F3 mRNA levels ; were significantly higher in ;
lung cancer patients)

While the standard version keeps the shorter extracted predicate:

(Blood E2F3 mRNA levels ; were ; significantly higher in lung
cancer patients)

● entity_context: This setting provides additional contextual (temporal, location,
etc.) information for the subject and object of each triple. For example in the
aforementioned sentence, we can produce triples with an additional field dedicated
to such information, as shown below:

(Blood E2F3 mRNA levels ; were significantly higher in ; lung
cancer patients ; when compared to either patients with benign
lung diseases or healthy subjects)

● split_triples: This setting allows for splitting or merging conjunctive phrases into
sub-triples depending on the current needs. For example, in the following sentence:

Long non-coding RNA CCAT2 plays an important role in
tumorigenesis, tumor growth and metastasis.

We can extract three separated triples for each sub-entity:

(Long non-coding RNA LncRNA CCAT2 ; plays ; an important role in
tumor growth)
(Long non-coding RNA LncRNA CCAT2 ; plays ; an important role in
metastasis)

Page 46 of 85

D3.2 – Second Component Release

(Long non-coding RNA LncRNA CCAT2 ; plays ; an important role in
tumorigenesis)

Or merge them into a single entity:

(Long non-coding RNA LncRNA CCAT2 ; plays ; an important role in
tumorigenesis tumor growth and metastasis)

2.3 Integration of OpenDataLinking with OpenDataDialog

This section aims at showcasing the information extraction as well as entity linking
capabilities (i.e., the aligning of textual mentions of named entities to their corresponding
entries in a knowledge base) of the INODE-SQL 2.0 system as an integrated platform. To this
end, we provide a set of preliminary SQL queries, their natural language explanation, and the
expected query result, both for the OncoMX dataset (biomarkers use case) and for the
CORDIS dataset. It should be noted that the NL-to-SQL functionality is not yet implemented
for the Biomarkers Use Case. However, the following examples serve as an early
demonstration of the final INODE system.

Biomarkers Use Case

SQL
Query 1

SELECT distinct gene, uberonname, uberon
FROM triples_fully_linked_v2
WHERE
(predicate like '%overexpress%' or
(predicate like '%express%' and (subject like '%over%' or
triples_fully_linked_v2.object like '%over%')) or
(subject like '%overexpress%' or triples_fully_linked_v2.object like
'%overexpress%')) and
(subject like '%cancer%' or triples_fully_linked_v2.object like
'%cancer%') and polarity='TRUE'

NL
equivalent

Find all anatomic entities where genes are overexpressed due to some cancer
reported in the literature.

Explanation

As described in D3.1, one of the goals of the OpenDataLinking component
was the extraction of triples from NL-text of cancer-related Pubmed articles.
The triples were linked to existing concepts (anatomical entities) of the Uberon
ontology and to genes of the OncoMX database upon extraction, then added
to the latest version of the OncoMX database. Based on this, we are now able
to find all literature cases (derived from triple extraction on Pubmed articles)
that include “over-expression” of a gene on a human body part with cancer.
“Over-expression” synonyms such as “increased expression” are not
considered in this case.

Page 47 of 85

D3.2 – Second Component Release

Result
(latest
version- v2)

Page 48 of 85

D3.2 – Second Component Release

Result
(older-v1)

Improve-
ments over
v1

The efficient combination of the two OIE engines’ outputs by leveraging the
triple refinement approach introduced in v2, leads to the doubling of the
extracted triples that are linked with gene overexpression due to cancer.
Hence, the new version increases the recall for triple extraction.

SQL
Query 2

SELECT distinct gene, uberonname, uberon
FROM triples_fully_linked_v2
WHERE
(predicate like '%overexpress%' or
(predicate like '%express%' and (subject like '%over%' or
triples_fully_linked_v2.object like '%over%')) or
(subject like '%overexpress%' or triples_fully_linked_v2.object like
'%overexpress%')) and
(subject like '%cancer%' or triples_fully_linked_v2.object like
'%cancer%') and
polarity='TRUE' and uberonname='breast'

NL
equivalent

What are the genes overexpressed in breast cancer reported in the literature?

Explanation

Similar to the above query, we again exploit the extraction of triples from the
literature (PubMed articles) and their mapping to genes and anatomical
entities. This time, however, we specialize our query on finding all literature
cases that include “over-expression” of a gene, specifically on breast cancer.

Page 49 of 85

D3.2 – Second Component Release

Once again, “over-expression” synonyms such as “increased expression” are
not considered.

Result
(latest
version- v2)

Result
(older-v1)

Improve-
ments over
v1

While the number of literature extractions remains the same, the latest version
provides less false positives (i.e., triples that are incorrectly linked to gene
overexpression due to breast cancer). This is also verified in the next example
where we compare with the curated gene list. Hence, the new version
increases the precision for triple extraction.

SQL
Query 3

select *
FROM (select distinct gene, uberonname, uberon
FROM triples_fully_linked_v2
WHERE (predicate like '%overexpress%' or
(predicate like '%express%' and (subject like '%over%' or
triples_fully_linked_v2.object like '%over%')) or
(subject like '%overexpress%' or triples_fully_linked_v2.object like
'%overexpress%')) and
(subject like '%cancer%' or triples_fully_linked_v2.object like
'%cancer%') and polarity='TRUE' and uberonname='breast') as t1
LEFT JOIN
(select distinct de.gene_symbol, d.name from differential_expression
as de join disease as d on d.id = de.doid
where d.name = 'breast cancer' and expression_change_direction='up'
and de.statistical_significance = 'Yes') as t2 on
t2.gene_symbol=t1.gene

NL
equivalent

Compare breast cancer differentially expressed upregulated genes that are
statistically significant with the same genes overexpressed in breast cancer
from the literature.

Page 50 of 85

D3.2 – Second Component Release

Explanation

One of the goals of INODE is to enrich existing ontologies by exploiting text
mining (triple extraction, entity linking) approaches. In our case, the OncoMX
database already contains a curated list of genes that are found to be
expressed on different cancer types.Therefore, the purpose of this query is to
compare the curated results from the existing differential_expression table of
OncoMX with literature extractions based on our OIE approach. Only the rows
with non-null value columns correspond to validated extractions that were
found in the differential_expression table (aka the literature extraction confirms
the curated mention).
In the results that follow, we can see that some false positives have been
recorded by the information extraction engines (with NULL columns). For
example, that EGFR is shown in literature to be overexpressed in breast
cancer while the curated OncoMX cancer differential expression dataset
states as being down regulated. This contradiction is also the case of other
information extraction approaches used by domain experts. Our hypothesis is
that the contradictory results depend on the experiment conditions and
conclusions performed and reported in different research articles.

Result
(latest
version- v2)

Result
(older-v1)

Improveme
nts over v1

We observe that the latest version provides a higher number of verified results
compared to v1, as a result of the efficient triple unification approach.

SQL
Query 4

SELECT *
FROM (select distinct gene, uberonname, uberon

Page 51 of 85

D3.2 – Second Component Release

FROM triples_fully_linked_v2
WHERE (predicate like '%overexpress%' or
(predicate like '%express%' and (subject like '%over%' or
triples_fully_linked_v2.object like '%over%')) or
(subject like '%overexpress%' or triples_fully_linked_v2.object like
'%overexpress%')) and
(subject like '%cancer%' or triples_fully_linked_v2.object like
'%cancer%') and polarity='TRUE' and uberonname='breast') as t1
LEFT JOIN
(select distinct de.gene_symbol, d.name from differential_expression as
de join disease as d on d.id = de.doid where d.name = 'breast cancer'
and expression_change_direction='down') as t2 on
t2.gene_symbol=t1.gene

NL
equivalent

Compare breast cancer differentially expressed downregulated genes with the
same genes overexpressed in breast cancer from the literature.

Explana-
tion

The purpose of this query is similar to SQL Query 3. This time we compare the
upregulated genes found by information extraction to the downregulated
genes of the curated table to discover potential false assignments. Ideally we
would like all records to contain NULLs as a result of the JOIN, since a non-null
row means that a gene found by information extraction to be upregulated in
breast, is actually downregulated according to the curated table.

Result
(latest
version-
v2)

Result
(older-v1)

Improvem
ents over
v1

Similar to Query 4, we observe that the latest version provides a smaller
number of false positives (i.e., downregulated genes in the curated list that are
shown as upregulated), as a result of the efficient triple unification approach.

Page 52 of 85

D3.2 – Second Component Release

SQL
Query 5

SELECT distinct *
FROM triples_fully_linked_v2
WHERE (predicate like '%biomarker%'
or subject like '%biomarker%' or object like '%biomarker%') and
(predicate like '%cancer%'
or subject like '%cancer%' or object like '%cancer%') and
polarity='TRUE' and uberonname != 'tissue'

NL
equivalent

Find all cancer biomarkers from the literature.

Explana-
tion

This is a simple query showcasing the information extraction capabilities of the
OpenDataLinking component. We focus on finding all literature cases (derived
from triple extraction on Pubmed articles) that include the keywords “cancer”
and “biomarker” in the extracted triples.

Result
(latest
version-
v2)

Result
(older-v1)

Improve-
ments
over v1

A significant increase in the number of extractions showcases the upgraded
capabilities of the latest triple extraction approach compared to v1. Moreover,
the improvements introduced in the OIE process lead to “cleaner” predicates
(i.e., that contain less non-informative context).

R&I Use Case

SQL
Query 1

SELECT acronym, objective
FROM projects
WHERE unics_id IN
(SELECT neighbour FROM projects
INNER JOIN project_neighbours
ON projects.unics_id = project_neighbours.project
WHERE acronym = 'THINFRAME')

NL
equivalent

Find 3 closest contextual neighbours of the THINFRAME EU-funded project and
their descriptions.

Explana-
tion

As described in D3.1, in the context of the R&I Use Case, we leverage the
natural language text of each project stored in the SIRIS database to find
semantic neighbours of the existing CORDIS projects, based on their vector
representation similarities. We then enrich the SIRIS database with the

Page 53 of 85

D3.2 – Second Component Release

discovered neighbour pairs. This simple query aims at finding the 3 most similar
projects to a given one, based on their contextual similarity.

Note that while this approach is similar to the by-neighbour operator
introduced in Section 2.1.4, the current approach focuses on the semantic
similarity of unstructured text (expressed in the form of word/sentence
embeddings). On the contrary, the by-neighbour operator is relevant only for
ordered attributes and thus cannot be leveraged for NL-text.

Result

SQL
Query 2

SELECT acronym, objective
FROM projects
WHERE unics_id IN
(SELECT neighbour FROM projects
INNER JOIN project_neighbours
ON projects.unics_id = project_neighbours.project
WHERE acronym = 'SOLUS' AND framework_program='H2020')

NL
equivalent

Find closest contextual neighbours of the SOLUS H2020 project and their
descriptions.

Explana-
tion

This is similar to the above query; we are searching for contextual neighbours of
a project. However, now we set the additional condition that the mentioned
project is part of the H2020 framework. This aims at discarding any potential
synonyms from different frameworks that could influence the results.

Result

SQL
Query 3

SELECT acronym, title, objective, framework_program
FROM projects WHERE unics_id IN
(SELECT neighbour FROM projects
INNER JOIN project_neighbours
ON projects.unics_id = project_neighbours.project
WHERE objective LIKE '%urban transport%'
ORDER BY distance ASC LIMIT 5)

NL
equivalent

Show the acronym, title, objective and framework of the 5 contextually closest
projects to urban transport.

Explana-
tion

In this query we do not directly search for contextual neighbours of a particular
project; instead we focus our search on a specific topic/category (e.g., urban
transport) and search for neighbours that share the same topic. Note that, while
this query implies that there must be at least one project containing the phrase
“urban transport” in its objective description, the neighbours identified for that
project do not necessarily include the same text. This showcases the added
value of vector representations for NL-text, in the context of semantic similarity.

Page 54 of 85

D3.2 – Second Component Release

Result

SQL
Query 4

SELECT acronym, title, ec_call
FROM projects
WHERE framework_program='H2020' AND unics_id IN
(SELECT neighbour FROM projects
INNER JOIN project_neighbours
ON projects.unics_id = project_neighbours.project
WHERE acronym = 'ZEOSOL')

NL
equivalent

Find the closest contextual neighbours of the ZEOSOL project that are under
the H2020 framework and show their acronym, title and call topic.

Explana-
tion

In this query we are searching for similar projects of ZEOSOL, but we are
limiting the results on neighbours that belong only to the H2020 framework. We
are also querying for additional information (acronym, title, and topic).

Result

SQL
Query 5

SELECT unics_id, acronym, title, start_year, total_cost
FROM projects
WHERE framework_program='H2020' AND start_year > 2018 AND
total_cost<8000000 AND unics_id IN
(SELECT neighbour FROM projects
INNER JOIN project_neighbours
ON projects.unics_id = project_neighbours.project
WHERE acronym = 'GOLIATH'
ORDER BY distance ASC)

NL
equivalent

Find the closest contextual neighbours of the GOLIATH project that are under
the H2020 framework, started later than 2018 and have a total cost less than
8M, and show their ID, acronym, title, start year, and cost.

Explana-
tion

This is a more complex query , as we are searching for similar projects to
GOLIATH based on multiple conditions. Consequently, the results are limited
(from the 3 contextual neighbours extracted for each project by
OpenDataLinking, only one fulfills every condition).

Result

Page 55 of 85

D3.2 – Second Component Release

3 INODE-SPARQL 1.0 IN ACTION

3.1 OpenDataDialog

3.1.2 NL-to-SPARQL: Translating Natural Language Questions to SPARQL

One of the important advantages of making data available in a knowledge graph, which can
then be queried via SPARQL, is that the knowledge graph itself, as well as the corresponding
domain ontology, can make use of a terminology closer to the user’s natural language. This
can greatly benefit the process of searching and exploring the data, in particular through
natural language questions. In the case of a virtual knowledge graph, these benefits do not
need to come at the cost of changing the original data sources (for example, the relational
databases of CORDIS and SDSS), given that these can be kept unmodified, through the use of
relational-to-RDF mappings. In the following, we provide a few concrete examples to
illustrate the benefits of question answering over the virtual knowledge graphs of CORDIS
and SDSS with Bio-SODA.

3.1.2.1 Querying CORDIS in NL with Bio-SODA

The CORDIS database can be easily queried in natural language, for example in order to look
for all projects of a certain principal investigator of interest or all members of a given project.
A simple example is shown in Figure 3.1. Further examples are available on the CORDIS demo
page for Bio-SODA.

Figure 3.1: An example natural language question over the CORDIS knowledge graph
using Bio-SODA.

Page 56 of 85

D3.2 – Second Component Release

3.1.2.2 Reasoning over the CORDIS Ontology

Although the CORDIS ontology is quite simple, it still presents hierarchies that can be
exploited by a reasoner. For instance, consider the following query in natural language.

“titles of erc projects with coordinators and their geographic location”

The geographic locations in CORDIS conform to the EU classification based on the NUTS
classification. The NUTS classification25 (Nomenclature of territorial units for statistics) is a
hierarchical system for dividing up the economic territory of the EU.

Specifically, the CORDIS ontology presents the following structure:

Since there are three territorial units, without reasoning a user should explicitly ask for each
of them. That is, the query above should be formulated as:

“titles of erc projects with coordinators and their NUTS 1 location or NUTS 2 location or NUTS
3 location”

The reasoner relieves the user from such a burden, and the query can simply be formulated
according to the hierarchy above as:

“titles of erc projects with coordinators and their NUTS location”.

These are some of the reasoning capabilities that are currently supported by Ontop. These
capabilities, as well as additional ones illustrated next, will also be integrated with Bio-SODA
in the next release.

3.1.2.3 Querying SDSS in NL with Bio-SODA

In the lack of a domain ontology, the original relational database of SDSS cannot be easily
searched in natural language, given that it requires understanding the low-level structure of
the database, for example, that the attributes “ra” and “dec”, refer to “right ascension” and
“declination”, respectively. Furthermore, one possible common use case, querying for
photometrically observed galaxies, requires the user to know that a galaxy is defined by the
numerical value 3 for the attribute “type” of the table “PhotoObj”. However, in the
virtual knowledge graph of SDSS, made accessible through Ontop and realized through the
OpenDataLinking services, this semantic information can be easily made explicit, for
example, through rdfs:labels, allowing the user to search by the attribute name in a
much more convenient manner. Therefore, Bio-SODA can easily answer a question
formulated in natural language, such as “What are all the photo galaxies with right ascension
> 100 and declination < 100?”. The process is illustrated in Figure 3.2 and Figure 3.3. Note
that the equivalent keyword query directly over the relational database would have to be
formulated as “photoobj type = 3 ra > 100 dec < 100”.

25 https://ec.europa.eu/eurostat/web/nuts/background

Page 57 of 85

D3.2 – Second Component Release

Figure 3.2: An example natural language question and candidate matches over the SDSS
knowledge graph using Bio-SODA.

Figure 3.3. Corresponding SPARQL query and results table for the natural language question
over the SDSS knowledge graph using Bio-SODA.

Further higher-level concepts have also been made available in the SDSS ontology, in order to
allow users to easily search for more complex astrophysical objects with certain properties of
interest, such as star forming galaxies with a specific velocity dispersion or starburst galaxies
with a particular redshift. An example is shown in Figure 3.4.

Page 58 of 85

D3.2 – Second Component Release

Figure 3.4: Example natural language question targeting starburst galaxies in the SDSS
knowledge graph using Bio-SODA.

3.1.2.4 Reasoning over the SDSS Ontology

The SDSS database provides two main catalogs of objects: those coming from photometric
observations done with cameras, and those coming from spectrometric observations done
with a multi object, fiber spectroscopic instrument. These two categories bring different
kinds of information about the objects in the sky, with some overlapping. Consider again the
query

“What are all the photo galaxies with right ascension > 100 and declination < 100?”

and let us slightly modify it, by not only restricting ourselves to photometric observations
(photo galaxies), but wanting to consider all the galaxies. One option might then be the
query:

“What are all the photo and spec galaxies with right ascension > 100 and declination < 100?”

Observe that this solution is not optimal, as it requires the users to be aware of the fact that
there exist two different catalogs, and that they need to explicitly ask for both.

Page 59 of 85

D3.2 – Second Component Release

Thanks to reasoning, however, we have a better alternative. The SDSS ontology we devised
provides a convenient hierarchy specifying that both photo and spec galaxies represent, in
fact, galaxies:

Hence, why not to ask for galaxies directly, ignoring the catalog they come from?

“What are all the galaxies with right ascension > 100 and declination < 100?”

The reasoner implemented in Ontop will automatically translate such a query into a query
retrieving both photo galaxies and spec galaxies, relieving the final user from that burden.

3.1.3 Enabling SPARQL Queries over OncoMX

3.1.3.1 Enriching OncoMX with Ontologies using Ontop

Originally, the OncoMX datasets are composed of semi-structured data related to cancer
biomarkers. Based on them, we built a relational database with corresponding relational
schema. Moreover, we took advantage of the Ontop tool over the created OncoMX relational
database to integrate external RDF-based ontologies. For example, nucleotides and amino
acids are simply stored in the OncoMX relational database as IUPAC (International Union of
Pure and Applied Chemistry) codes such as “A” to represent the Adenine nucleobase. In
addition to this, “A” is also a code for the amino acid Alanine. We solve this ambiguity by
enriching the OncoMX data with the Chemical Entities of Biological Interest (ChEBI)
vocabulary26. This enables us to retrieve more information that is not in the original OncoMX
datasets, such as the nucleobase name, its synonyms, and chemical formula.

In addition, we use the following vocabularies and ontologies to enrich the OncoMX dataset:

● Experimental Factor Ontology (EFO)27

● National Cancer Institute Thesaurus (NCIt) OBO edition28

● Uber-anatomy ontology (UBERON)29

● Ontology for Biomedical Investigations (OBI)30

● OPMI: Ontology of Precision Medicine and Investigation31

31 He Y, Ong E, Schaub J, Dowd F, O’Toole JF, Siapos A, Reich C, Seager S, Wan L, Yu H, Zheng J, Stoeckert C, Yang X, Yang S, Steck
B, Park C, Barisoni L, Kretzler M, Himmelfarb J, Iyengar R, Mooney SD, for the Kidney Precision Medicine Project Consortium.
OPMI: the Ontology of Precision Medicine and Investigation and its support for clinical data and metadata representation and

30 Bandrowski, A., Brinkman, R., Brochhausen, M., Brush, M. H., Bug, B., Chibucos, M. C., Clancy, K., Courtot, M., Derom, D.,
Dumontier, M., Fan, L., Fostel, J., Fragoso, G., Gibson, F., Gonzalez-Beltran, A., Haendel, M. A., He, Y., Heiskanen, M.,
Hernandez-Boussard, T., Jensen, M., … Zheng, J. (2016). The Ontology for Biomedical Investigations. PloS one, 11(4), e0154556.
https://doi.org/10.1371/journal.pone.0154556

29 Mungall, C.J., Torniai, C., Gkoutos, G.V. et al. Uberon, an integrative multi-species anatomy ontology.Genome Biol 13, R5
(2012). https://doi.org/10.1186/gb-2012-13-1-r5

28 https://github.com/NCI-Thesaurus/thesaurus-obo-edition

27 Malone J, Holloway E, Adamusiak T, Kapushesky M, Zheng J, Kolesnikov N, Zhukova A, Brazma A, Parkinson H: Modeling
Sample Variables with an Experimental Factor Ontology. Bioinformatics 2010, 26(8):1112-1118

26 de Matos, P., Alcántara, R., Dekker, A., Ennis, M., Hastings, J., Haug, K., Spiteri, I., Turner, S., & Steinbeck, C. (2010). Chemical
Entities of Biological Interest: an update. Nucleic acids research, 38(Database issue), D249–D254.
https://doi.org/10.1093/nar/gkp886

Page 60 of 85

https://drive.google.com/file/d/1TN3jH4hoh40Saa8adlR_TocREGTNPVlC/view
https://github.com/NCI-Thesaurus/thesaurus-obo-edition

D3.2 – Second Component Release

● Sequence types and features ontology (SO)32

● Semantic Science Integrated Ontology (SIO)33

The enrichment is done by manually implementing Ontop mappings such as the one shown
in Figure 3.5. In this mapping, we can interpret the “SELECT” projections as the body of a
Horn-like rule that is written with the SQL syntax. This SELECT query, when executed over the
OncoMX DB, retrieves the information needed to derive the rule head. In this case, the rule
head is actually an RDF graph pattern that is structured based on the cancer biomarker
ontology we are developing as an RDF data schema for OncoMX data. This ontology reuses
the previously mentioned vocabularies among others, for example, FALDO34 for describing
the nucleotide and amino acid locations, as part of its terminological and assertion boxes.

Figure 3.5: An Ontop mapping illustrating how nucleotides and amino acid codes are mapped
into the Chemical Entities of Biological Interest (ChEBI) vocabulary terms.

3.1.3.2 Reasoning over the OncoMX Ontology

Another added value of accessing the OncoMX data via ontologies with Ontop is the fact of
applying reasoning such as subsumption. This contributes to simplify the query writing and
knowledge discovery.

For example, let us consider the NL question (Q): What are the genomic biomarkers for
breast cancer? In the OncoMX relational database, there is no information about the fact
that all gene and genetic biomarkers are indeed genomic biomarkers. Therefore, without this
information, the response of this question will not be complete, and solely biomarkers

34 Bolleman, J.T., Mungall, C.J., Strozzi, F. et al. FALDO: a semantic standard for describing the location of nucleotide and protein
feature annotation. J Biomed Semant 7, 39 (2016). https://doi.org/10.1186/s13326-016-0067-z

33 Dumontier, M., Baker, C.J., Baran, J. et al. The Semantic Science Integrated Ontology (SIO) for biomedical research and
knowledge discovery. J Biomed Semant 5, 14 (2014). https://doi.org/10.1186/2041-1480-5-14

32 Mungall CJ, Batchelor C, Eilbeck K (Feb 2011). "Evolution of the Sequence Ontology terms and relationships". Journal of
Biomedical Informatics. 44 (1): 87–93. doi:10.1016/j.jbi.2010.03.002.

analysis. The 10th International Conference on Biomedical Ontology (ICBO-2019), July 30 - August 2, 2019, Buffalo, NY, USA.
10-page full length article.

Page 61 of 85

https://drive.google.com/file/d/1TN3jH4hoh40Saa8adlR_TocREGTNPVlC/view

D3.2 – Second Component Release

explicitly annotated with the “Genomic” tag are retrieved by excluding those with either
“Gene” or “Genetic” tags.

Figure 3.6 shows a portion of the OncoMX relational data schema about biomarkers. As a
result, to retrieve all biomarkers from the OncoMX relational DB the question would need to
be rewritten to explicitly include the genomic biomarker subtypes: “Genetic” and “Gene”.
This results in the following expanded question (EQ): “What are the genomic, genetic and
gene biomarkers for breast cancer?”.

An example of a corresponding SQL query for the expanded question (EQ) is depicted as
follows:

SELECT gene_symbol, biomarker_description
FROM biomarker AS b JOIN
biomarker_edrn AS edrn ON b.id = edrn.id JOIN
anatomical_entity AS anat ON anat.id = edrn.uberon_anatomical_id

WHERE anat.name = 'breast' AND
biomarker_type IN ('Genomic', 'Gene', 'Genetic')

Figure 3.6: A portion of the OncoMX relational data schema for structuring biomarker related
data.

Based on the latest OncoMX data, on the one hand, a direct translation of the (Q) question
to SQL only retrieves one result: the CDH1 gene as a genomic biomarker, no subtypes are
considered. On the other hand, by considering an ontological approach with Ontop over the
OncoMX relational database, we are able to fetch four biomarkers in total (i.e., CDH1,
MMP10, STOM, MYC genes) where three of them are explicitly defined as gene biomarkers,
that are also genomic biomarkers. This is only possible because Ontop infers that the

Page 62 of 85

D3.2 – Second Component Release

instances of gene biomarkers are genomic biomarkers too. Figure 3.7 exemplifies a
corresponding SPARQL query translated from the question (Q).

Figure 3.7: Ontop SPARQL query editor in Protege. It illustrates the corresponding SPARQL
query and answers for the question: What are the genomic biomarkers for breast cancer? The

green box on the top right of this figure shows a portion of the ontology used, stating that
gene and genetic biomarkers (subclasses) are also genomic biomarkers (superclass). Based

on this portion of the ontology, thanks to the Ontop reasoner, the MMP10, STOM, MYC gene
biomarkers are also retrieved as a genomic biomarker, rather than solely CDH1.

3.1.3.3 Querying OncoMX with SPARQL

Table 3.1 depicts three questions, their corresponding SPARQL queries as part of our 11
query test catalog, and their number of results along with their execution time.

Question SPARQL query Results

What are all
cancer types in
the database?

SELECT * {
?doid a efo:EFO_0000408.
#disease
?doid rdfs:label ?name;
terms:identifier ?id.}

Retrieves: 43 results in ~22 seconds

What are the
cancer types
where the A1BG
gene expression
is increased (up
regulated)?

SELECT ?cancer {
?x a :CancerDifferentialExpression
;
genex:hasSequenceUnit
<https://identifiers.org/hgnc.sym
bol:A1BG> ;
:hasTargetDisease / rdfs:label
?cancer;

Retrieves: 8 results in ~11 seconds

Page 63 of 85

D3.2 – Second Component Release

(response time
~1 second)

:hasExpressionChange
sio:SIO_000640. #increased (up)
}

What are the
healthy organs
where the A1BG
is expressed?

SELECT ?organ {
?gene rdfs:label 'A1BG'.
?gene genex:isExpressedIn/
rdfs:label ?organ.}

Retrieves: 74 results in ~0.15 second.

Table 3.1. Querying OncoMX with Ontop and SPARQL query language.

3.2 OpenDataLinking

3.2.1 Mapping from Relational Schema to Ontology via Ontop

Manually writing ontologies and mappings, starting from the relational schema of one or
more available data sources, is a tedious and error-prone process. For this reason, in INODE
our objective is to automate as much as possible the generation of an ontology and
mappings that are well suited for extracting data from the available data sources.

In INODE-SPARQL 1.0, MPBoot goes beyond the W3C Direct Mapping Recommendation
(which was the technique used for INODE 1.0), overcoming several shortcomings of such
recommendation. For convenience, we will refer to the system described in Release 1.0 as
Mapping Patterns Bootstrapper 1.0 (MPBoot 1.0), and to the current system as MPBoot 2.0.
In compliance with the INODE Tasks 4.1 and 4.2, MPBoot 2.0 supports the bootstrapping
process along two main directions: data-driven bootstrapping and task-driven bootstrapping.

Data-driven bootstrapping. In its default modality, MPBoot takes as input a configuration
file, containing the connection parameters to a relational data source, and produces an
ontology and mappings that reflect how the data is organized within the data source. This is
also the modality envisioned by the Direct Mapping recommendation. The main shortcoming
of Direct Mapping, highlighted in Release 1.0, is that the generated ontologies

Page 64 of 85

https://www.w3.org/TR/rdb-direct-mapping/

D3.2 – Second Component Release

Figure 3.8: SDSS ontology generated by MPBoot 1.0 (left) vs MPBoot 2.0 (right).

are poorly structured. To overcome this limitation, MPBoot 2.0 exploits our theoretical
results on mapping patterns and the capabilities of the OWL 2 QL language to encode in the
ontology schema additional information available in the data source, such as taxonomic
relationships. Specifically, MPBoot 2.0 generates:

● Domain and range axioms for data-properties, by relying on the conversion between
DB types and RDFS recommended by the W3C

○ See https://www.w3.org/TR/csv2rdf/#datatypes
● Domain and range axioms for object-properties.
● Subclass relations.

Figure 3.8 compares the ontology produced by MPBoot 1.0 to the one produced by MPBoot
2.0 over the SDSS dataset. We observe that the ontology produced by MPBoot 2.0 has a
richer structure, as it contains semantic connections (object properties and class
subsumptions) between different classes.

Another shortcoming of Direct Mapping we notice here is that it is fully automatic: the
syntactic specification of the ontology classes and relations is exactly the same of the one of
the data sources at hand. This makes the generated ontologies and mappings very hard to be
easily adapted towards specific user-needs. MPBoot 2.0 overcomes this limitation by
supporting a semi-automatic approach to the generation of mappings and ontologies.
Specifically, MPBoot 2.0 allows the user to specify, through a configuration file, information
about:

● What tables and attributes of the DB to use for the automatic bootstrapping process
(e.g., the user could be interested in mapping only a subset of the available tables
and attributes, rather than all of them);

Page 65 of 85

D3.2 – Second Component Release

● What names to use for the generation of ontology individuals, classes, and
properties obtained from specific tables and attributes of the DB.

The first item allows users to differentiate the portions of the ontology to generate
automatically from those that require manual crafting. The second item allows them to use
names that are more suitable to their needs and understanding of the domain terminology,
rather than those chosen by the database designer (this is particularly useful in the
astrophysics scenario, where several column names use abbreviations that are hard to
understand from a natural language perspective). Thanks to these capabilities of MPBoot 2.0,
the generated ontology and mappings can be easily merged with manually-written
(imported) ontologies and mappings. Such strategy has proved itself successful in the
generation of the ontology and mappings for the SDSS dataset (see Section 4).

Task-driven bootstrapping. As discussed so far, MPBoot drives the bootstrapping process
according to the constraints declared in the DB schema. In real-world scenarios, however,
such constraints might not be available, e.g., due to performance considerations or because
of data source denormalization. As a minimal example of this, consider the DB schema in
Figure 3.9, which is part of the widely-used Spider dataset35:

Figure 3.9: Data model of the flights database as part of the Spider dataset. We can observe

the orphan table “airlines” which is not linked with the table “flights” via a primary/foreign

key relationship.

35 https://yale-lily.github.io/spider

Page 66 of 85

https://yale-lily.github.io/spider

D3.2 – Second Component Release

In such DB schema, there is no explicit (primary/foreign key) relationship between flights
and airlines. Hence, the bootstrapper will not generate an object property relating

instances of the class Flights (capturing the elements in the flights table) to the

instances of the class Airlines (capturing the elements in the airlines table).

Not having an object property in the ontology has, on the query-answering process, a much
more severe impact than not having a foreign key in the database. Thanks to the expressivity
of the SQL language, in fact, it is still possible to retrieve the country of the airline serving a
specific flight:

SELECT F.airline, F.flightno, A.country
FROM flights AS F JOIN airlines AS A ON F.airline = A.uid
WHERE f.airline = “Lufthansa” AND f.flightno = “2234”

On the SPARQL side, however, without an explicit object property connecting flights and
airlines the above SQL query cannot be expressed at all. Hence, for the database in Figure
3.9, the data-driven bootstrapping process results in schema-to-ontology transformation
which is not lossless.

The idea of task-driven mappings is to exploit a given SQL query workload in order to identify
and fix these situations. With respect to our example, MPBoot will parse the SQL query and
derive that the attribute airline of table flights refers to the primary key of table

airlines. Hence, it will conclude that there should be a semantic connection between the

classes Flights and Airlines, and generate an object property accordingly. For our example, it
will generate the following mapping (where we highlighted in green the newly created
“airlines#join-uid” object property):

Id BOOTSTRAPPED-MAPPING-ID1
target <http://semanticweb.org/flights/airlines/uid={airlines_uid}>

<http://semanticweb.org/flights/airlines#join-uid>
<http://semanticweb.org/flights/flights/Airline={fA};FlightNo={fN}> .

source SELECT "airlines"."uid" AS airlines_uid, "flights"."Airline" AS fA,
"flights"."FlightNo" AS fN
FROM "airlines", "flights" WHERE airlines.uid = flights.airline

It is now possible to express the SPARQL equivalent of our SQL query:

SELECT ?country WHERE {
?flight :airline “Lufthansa” ;

:flight_no “2234” ;
:airlines#join-uid ?airline .

?airline :country ?country .
}

In Section 4 below, when talking about data models, we will provide and discuss
visualizations for the SDSS ontology, which has been semi-automatically bootstrapped by
means of MPBoot.

Page 67 of 85

D3.2 – Second Component Release

4 API SPECIFICATION

In this section we provide the API specification of INODE-SQL 2.0 and INODE-SPARQL 1.0. We
will only specify the new APIs.

4.1 OpenDataDialog

4.1.1 NL-to-SQL and SQL-to-NL

The API design reported as part of INODE-SQL 1.0 was made general enough to
accommodate new datasets and natural language systems. In this sense, the addition of the
astrophysics dataset SDSS and the natural language system ValueNet to the present release
of INODE-SQL 2.0 has not required any modification to the API specification of these two
services.

The introduction of a logging mechanism oriented towards evaluation has required a new
piece of information to be passed to the two services, so that the inputs, outputs, and
latency of the NL-to-SQL and SQL-to-NL translations can be properly recorded and associated
to a user’s session. This information is an identifier for the user, which is passed in an HTTP
header named X-Reference-ID.

4.1.2 Multi-Table Explorer

The API has changed only slightly due to the addition of new data types and the inclusion of
additional table metadata such as source SQL statement and SQL-to-NL explanation.
However, this was an internal API change and did not have any impact on our partners’
components which integrate into the Multi-Table Explorer (see Section 1.5 for details).

4.1.3 Pipeline Operators

Our operators are described in Section 1.3.2. Here, we provide the semantics of the two new
operators: by-neighbors and by-distribution, which have been added to
INODE-SQL 2.0.

4.1.3.1 Exploration operator by-neighbors. This operator takes a set S and returns 𝑘
sets , such that for each predicate (a = v), where a is an ordered attribute return two sets𝑠' 𝑠'
, . The algorithm for implementation of the by-neighbors operator can be𝑠''
summarized as: receive input S (an example set), A (a set of attributes defining a
distribution) and k (the number of resulting sets). Then for each predicate (a = v) in
s.description where a is an ordered attribute, return two sets , with the following𝑠' 𝑠''
description:

○ replace (a = v) in s.description with (a = v+1) to obtain .description𝑠'
○ replace (a = v) in s.description with (a = v-1) to obtain .description𝑠''

Page 68 of 85

D3.2 – Second Component Release

The screenshot of by-neighbors is as follows:

4.1.3.2 Exploration operator by-distribution. This operator takes a set of items and𝐷
a set of attributes and returns sets of items that are distinct from the and whose items𝐴 𝑘 𝐷
share the same distribution of values for each attribute in as items in .𝐴 𝐷

The SQL expression is as follows: SELECT FROM WHERE* 𝐷\𝐷' 𝑃
𝐴
≈

The algorithm for implementation of the by-distribution operator can be
summarized as: receive input D (an example set), A (a set of attributes defining a
distribution) and k (the number of resulting sets). It returns that contains the k largest sets𝐷'
that overlap the least with the input set and which are the most disjoint. All sets have the
same distribution as the input one.

Page 69 of 85

D3.2 – Second Component Release

The screenshot of by-distribution is as follows:

4.1.3.3 by-recommendation operator (PyExplore)

This is an example of the REST-endpoint showcasing a sample request and response of a
by-recommend operator.

Below we can see an example with the different values for the request body:

Page 70 of 85

D3.2 – Second Component Release

Page 71 of 85

D3.2 – Second Component Release

Page 72 of 85

D3.2 – Second Component Release

4.1.4 Integrated Query Processing

Ontop is compliant with the standard SPARQL HTTP protocol. One can use POST or GET
requests to communicate with a SPARQL endpoint powered by Ontop.

Example
For example, suppose that the SPARQL endpoint is http://localhost:8080/sparql. Then one
can query this endpoint through a POST request:

POST http://localhost:8080/sparql
Content-Type: application/sparql-query
Accept: application/json

PREFIX : <http://example.org/voc#>
SELECT DISTINCT ?teacher {
?teacher a :Teacher .

}

Page 73 of 85

https://www.w3.org/TR/sparql11-protocol/
http://localhost:8080/sparql

D3.2 – Second Component Release

The above request can be sent through, for instance, a cURL command:

$ curl --request POST \
--url http://localhost:8080/sparql \
--header 'accept: application/json' \
--header 'content-type: application/sparql-query' \
--data 'PREFIX : <http://example.org/voc#> SELECT DISTINCT ?teacher {?teacher a :Teacher

.}'
{
"head" : {
"vars" : [
"teacher"

]
},
"results" : {
"bindings" : [
{
"teacher" : {
"type" : "uri",
"value" : "http://example.org/voc#uni1/academic/1"

}
},
{
"teacher" : {
"type" : "uri",
"value" : "http://example.org/voc#uni1/academic/2"

}
},

// ...
]

}
}%

Language-specific API
Any language-specific API supporting the SPARQL HTTP protocol can be used in combination
with Ontop. Notable examples include:

● Java with the Maven dependency: org.eclipse.rdf4j:rdf4j-client
● Python with the RDFLib lirary https://github.com/RDFLib/sparqlwrapper
● JavaScript in HTML using standard Fetch API following the SPARQL HTTP

protocol

A demo on how to use the SPARQL API through a programmatic interface is
demonstrated at https://github.com/ghxiao/ontop-endpoint-demo.

Page 74 of 85

https://github.com/ghxiao/ontop-endpoint-demo/blob/master/java
https://rdf4j.org/javadoc/latest/index.html?org/eclipse/rdf4j/http/client/package-summary.html
https://github.com/ghxiao/ontop-endpoint-demo/blob/master/py
https://github.com/RDFLib/sparqlwrapper
https://github.com/ghxiao/ontop-endpoint-demo/blob/master/js
https://github.com/ghxiao/ontop-endpoint-demo

D3.2 – Second Component Release

4.2 OpenDataLinking

4.2.1 OpenDataLinking Triple Extraction from NL-text Endpoint (REST-endpoint)

The API of OpenDataLinking Triple Extraction from NL-text remains unchanged from INODE
v1.0.

4.2.2 MPBoot API

The bootstrapping of ontologies and mappings is an offline activity which happens before the
deployment of the INODE system. For such a reason, MPBoot does not provide a
programmatic interface, but is a command-line tool.

$./ontop help bootstrap
NAME

ontop bootstrap - Bootstrap ontology and mapping from the database
SYNOPSIS

ontop bootstrap [{-a | --advanced}] [{-b | --base-iri} <base IRI>]
[{-c | --constraint} <constraint file>]
{-m | --mapping} <mapping file>
{-p | --properties} <properties file>
[{-r | --renamings} <Aliases CSV file>]
[{-t | --ontology} <ontology file>]
[{-w | --workload} <Workload JSON file>]

OPTIONS
-a, --advanced
Enable patterns-based generation (MPBoot)

-b <base IRI>, --base-iri <base IRI>
base uri of the generated mapping

-c <constraint file>, --constraint <constraint file>
user supplied DB constraint file

-m <mapping file>, --mapping <mapping file>
Mapping file in R2RML (.ttl) or in Ontop native format (.obda)

-p <properties file>, --properties <properties file>
Properties file

-r <Aliases CSV file>, --renamings <Aliases CSV file>
Renamings file [with -a only]

-t <ontology file>, --ontology <ontology file>
OWL ontology file

-w <Workload JSON file>, --workload <Workload JSON file>
Query workload [with -a only]

Page 75 of 85

D3.2 – Second Component Release

For instance, the command exploiting task-driven generation used for the airlines example in
Section 3.2.1 is the following:

$./ontop bootstrap -a -b "http://www.inode-project.eu" \
-t "onto/flight_2.owl" -m "onto/flight_2.obda" \
-p "onto/flight_2.properties" -w "onto/flights_queries.json"

4.3 Logging Services

The logging API consists of a single operation for writing a log entry:

The log entry to be recorded is passed as the operation’s parameter. This log entry is a JSON
object that consists of a timestamp, a reference identifier (RID), the name of the INODE
service/component that triggers the event being recorded (emitter), the type of event being
recorded, and a payload object that provides additional details on the event and whose
attributes depend on the specific event type.

Consider an example for the logging of evaluation parameters, where a participant starts a

session in the INODE-SQL 2.0 frontend. The entries recorded in the log are shown in Figure

4.1.

{

Page 76 of 85

D3.2 – Second Component Release

"timestamp": "2021-01-26T12:48:50.992Z",

"rid": null,

"emitter": "frontend",

"event": "create-new-id",

"payload": {}

},

{

"timestamp": "2021-01-26T12:48:50.992Z",

"rid": null,

"emitter": "backend",

"event": "create-new-id",

"payload": {

"rid": "550e8400-e29b-11d4-a716-446655440000"

}

},

{

"timestamp": "2021-01-26T12:48:51.992Z",

"rid": null,

"emitter": "frontend",

"event": "receive-id",

"payload": {

"rid": "550e8400-e29b-11d4-a716-446655440000"

}

},

{

"timestamp": "2021-01-26T12:48:52.992Z",

"rid": "550e8400-e29b-11d4-a716-446655440000",

"emitter": "frontend",

"event": "session-started",

},

Figure 4.1: An example of a log structure.

The logging example demonstrated in Figure 4.1 shows an extract from the logging
mechanism in action when the user first makes a request to the web app or “frontend” at
timestamp "2021-01-26T12:48:50.992Z". The “frontend” makes a request or an
“event” called “create-new-id” for an user id (or “rid”) to the “backend“ at the same
time instant. The “backend” generates the user ID (or “rid”) as “payload”
“550e8400-e29b-11d4-a716-446655440000” and sends to the “frontend” to

Page 77 of 85

D3.2 – Second Component Release

complete the request. The “frontend” acknowledges the “event” as “receive-id” and
the specific user ID (or “rid”) is assigned to the INODE web app. The “frontend” changes
the current “event” from “receive-id” to “session-started”.

Using our logging mechanism we are now able to record the Query Execution start time and
end time and calculate the Query Execution Latency for different systems (e.g. Nalir+, SODA,
Logos, ValueNet). In order to find the query execution latency for each system, a fixed set of
payload was given to each system. The average query execution for latency for SODA is
2939.57 ms, for Logos it is 36.62 ms, for Nalir+ it is 1403.3 and for ValueNet it is 6924.38 ms.

Page 78 of 85

D3.2 – Second Component Release

5 DATA MODELS

In this section we provide the database graphs, the entity-relationship diagrams and their
corresponding ontology views for the three use cases research & innovation policy making
(CORDIS), astrophysics (SDSS), and cancer research (OncoMX).

In contrast with the previous release, the database graphs of both CORDIS and SDSS
databases are annotated and stored only once in the system. Special labels have been
created for the majority of the nodes and the edges of the graphs (in order for Logos to
produce more natural explanations). Each node in the graph corresponds to a table or an
attribute. Edges connect either table with table (foreign-primary key relationships) or an
attribute with its corresponding table. Given an input query, Logos produces its natural
language explanation by traversing an extended part of this graph (called query graph)
corresponding to that particular query.

5.1 Research & Innovation Policy Making (CORDIS)

Except for the database graph, there were no changes on the data model since the
INODE-SQL 1.0 release.

The new database graph of CORDIS produced by Logos is illustrated in Figure 5.1.

Figure 5.1: CORDIS database graph created by Logos.

Page 79 of 85

D3.2 – Second Component Release

5.2 Astrophysics (SDSS)

There are no changes to the core data model (entity-relationship diagram) with respect to
INODE 1.0. However, the effort towards the creation of the ontology and mappings for this
scenario has progressed, since INODE 1.0, in two directions: one automatic (data-driven) and
the other manual.

The first direction has been followed through MPBoot, which allowed us to specify the
portions of the database that needed to be mapped automatically, and to freely choose the
names for instances, classes, and properties. Thanks to this flexibility, it has been possible to
directly merge the bootstrapped ontology together with the one we manually produced for
INODE 1.0. An additional effort has then been spent in the manual refinement of the merged
ontology. A visualization of the result of these activities is provided in Figure 5.2.

Figure 5.2: SDSS ontology 2.0 (WebVOWL visualization).

Page 80 of 85

D3.2 – Second Component Release

By retrieving information about the attributes, their corresponding tables and the

relationships among them, the SDSS database graph of Logos is created (see Figure 5.3).

Figure 5.3: SDSS database graph created by Logos.

5.3 Cancer Research (OncoMX)

The OncoMX relational data schema slightly changed, to be better compliant with version
1_0_25 of the OncoMX original datasets36. Moreover, we did some patches to correct minor
issues in the database schema and data used to populate it. The main modifications are
listed in Table 5.1. Furthermore, the latest OncoMX Extended Entity-Relationship (EER)
diagram is available for download37.

37 ftp://ftpbgee.unil.ch/inode/oncomx_v1_0_25_SQL_schema.pdf

36 https://data.oncomx.org

Page 81 of 85

ftp://ftpbgee.unil.ch/inode/oncomx_v1_0_25_SQL_schema.pdf
https://data.oncomx.org

D3.2 – Second Component Release

Table Modification

project_study Removed

differential_expression doid (disease ontology id) column added

differential_expression study_id column removed

cancer_tissue Added. It relates a cancer type to an organ.

disease_mutation Added ensembl_transcript_id as a foreign key to
relate disease_mutation with
map_protein_disease_mutation table

Table 5.1: The main changes in the OncoMX relational data model.

We also improved the cancer biomarker ontology (CBIO) developed by us to better describe
the OncoMX data. CBIO does not aim to solely serve as a controlled vocabulary but also as a
data schema in the cancer biomarker domain. In addition to OWL 2 built-ins (e.g.,
owl:sameAs), we use SKOS38 terms such as skos:narrowMatch to define abstract mappings
with external ontologies that often acts as controlled vocabularies. For example, the CBIO
term

MetabolomicBiomarker skos:narrowMatch <http://purl.obolibrary.org/obo/NCIT_C18520>

is an ontology term for the Metabolic Marker definition from National Cancer Institute
Thesaurus.

Moreover, CBIO can be visualised with the WebVOWL tool39. Figure 5.4 illustrates a portion
of CBIO by using the WebVOWL tool and Figure 5.5 shows part of the biomarker class
hierarchy. Figure 5.6 demonstrates an intersection node (i.e., Gene node) in the OncoMX
knowledge graph generated with Ontop to relate/link the different OncoMX datasets via “has
sequence unit” property assertions.

39 http://www.visualdataweb.de/webvowl/#iri=http://purl.org/cbio

38 SKOS Simple Knowledge Organization System, https://www.w3.org/2004/02/skos/.

Page 82 of 85

http://purl.obolibrary.org/obo/NCIT_C18520
http://www.visualdataweb.de/webvowl/#iri=http://purl.org/cbio
https://www.w3.org/2004/02/skos/

D3.2 – Second Component Release

Figure 5.4: Visualizing the cancer biomarker ontology with the WebVOWL Currently, it𝑡𝑜𝑜𝑙32.
is composed of 165 classes and 118 properties.

Figure 5.5: Biomarker ontological terms.

Page 83 of 85

D3.2 – Second Component Release

Figure 5.6: Gene instances as an intersection node among different OncoMX datasets in the
OncoMX knowledge graph generated with Ontop. Edges represent “has sequence unit”

property assertions and nodes are instances of the respectives named OWL classes. Bold
terms below the gene node list examples of gene attributes.

Page 84 of 85

