

INODE

Intelligent Open Data Exploration

is funded by the Horizon 2020 Framework Programme of the EU for Research and Innovation.

Grant Agreement number: 863410— INODE — H2020-EU.1.4.1.3.

Document Due Date: 30/04/2020
Document Submission Date: 27/04/2020

Work Package 2: System Architecture,
Requirements & Use Cases

Document Dissemination Level:
Public

D2.1 Requirements and use case
specification

 D2.1 Requirements and use case specification

Page 1 of 89

(This page has been intentionally left blank)

 D2.1 Requirements and use case specification

Page 2 of 89

Executive Summary

Deliverable D2.1 provides an analysis of the INODE requirements from both a technical and a

user perspective. It presents the use cases that will be deployed in the project, the

requirements that stem from these use cases, along with a rich set of technical requirements

that need to be addressed in order to provide the desired functionality as initially defined by

the INODE service offering.

This deliverable gives an overview of the project context as far as it concerns the objectives

and the goals of the task it refers to. The relationship to other WPs and tasks is also presented

to show alignment with the other activities of the project. The methodology that is followed

in this document starts with the definition of the INODE concept along with an overview of

the services that INODE plans to deliver. It continues with the description of the use cases, the

elicitation of the requirements and their consolidation. Three use cases are described using a

common pattern with a brief overview with respect to their context and needs for data

exploration and querying, as well as the visualization of the results, the context within which

they will be implemented, the description of the use case scenario as a set of functionalities

offered, the various stakeholders that are involved in their execution and the user-centric

requirements analysis perspective.

The requirements analysis process relies heavily on the involvement of the stakeholders in the

whole value chain that the project brings. The INODE consortium includes all necessary

stakeholders of the respective value chain and the whole methodology followed has been

aligned with this feature of the project. The consortium includes data infrastructure providers,

technology providers as well as service providers, integrators, and end-users who will be

recruited in the project through the pilot activities. This approach allows for a credible

validation of the INODE concept, along with different deployment configurations and service

operations plans.

The overall requirements analysis and consolidation is based on the well-established process

of dividing the requirements into two categories: functional and non-functional. The

functional aspect of the requirements analysis focuses on what a system must do to produce

the required operational behavior. This includes inputs, outputs, states, functions and

transformation rules. Functional requirements are the primary source of the requirements

that will eventually be reflected in the system specification. A non-functional requirements

analysis focuses on what other technical features a system must have in place in order to

facilitate the service provision.

This document concludes with a detailed and consolidated requirements list so that the

implementation of the INODE platform can be effectively carried out in the next tasks and

tracing mechanisms towards validating the requirements fulfillment can be achieved.

Moreover, the consolidated list of requirements will facilitate the collaboration and synergies

among different system developers and partners throughout the next tasks and work

packages of the project.

 D2.1 Requirements and use case specification

Page 3 of 89

Project Information

Project Name Intelligent Open Data Exploration

Project Acronym INODE

Project Coordinator Zurich University of Applied Sciences (ZHAW), CH

Project Funded by European Commission

Under the Programme
H2020-EU.1.4.1.3. - Development, deployment and

operation of ICT-based e-infrastructures

Call H2020-INFRAEOSC-2019-1

Topic INFRAEOSC-02-2019 - Prototyping new innovative services

Funding Instrument Research and Innovation action

Grant Agreement No. 863410

Document Information

Document reference D2.1

Document Title Requirements and use case specification

Work Package reference WP2

Delivery due date 30/04/2020

Actual submission date 27/04/2020

Dissemination Level Public

Author(s) Bastian Frederic, Mendes de Farias Tarcisio (SIB)

Contributor(s)

Koutrika Georgia, Skoutas Dimitris (ATHENA)

Amer-Yahia Sihem, Boumaout Mourad (CNRS)

Lücke-Tieke Hendrik, May Thorsten (Fraunhofer)

Litke Antonis, Mitropoulou Aikaterini, Papadakis Nikolaos,

Papadopoulos Dimitris (Infili)

Fabricius Max, Subramanian Srividya (MPE)

Massucci Francesco, Rull Guillem (SIRIS)

Calvanese Diego, Lanti Davide, Mosca Alesandro (UNIBZ)

Braschler Martin, Kosten Catherine, Smith Ellery,

Stockinger Kurt (ZHAW)

 D2.1 Requirements and use case specification

Page 4 of 89

List of Acronyms and Abbreviations

Acronym Explanation

ACID Atomicity, Consistency, Isolation, Durability

API Application Programming Interface

Bgee A multi-species gene expression database.

CLI Command Line Interface

CORDIS
Community Research and Development Information Service the

European Commission repository of EU-funded research

CRUD Create, Read, Update, Delete

CSV Comma Separated Values

EOSC European Open Science Cloud

EPO European Patent Office

ETL Extract, Transform, Load

GIS Geographic Information System

HTTP Hypertext Transfer Protocol

JSON JavaScript Object Notation

NL Natural Language

NLP Natural Language Processing

NUTS Nomenclature of territorial units for statistics

OncoMX

A cancer biomarker resource leveraging published literature and

genomics data.

OWL Web Ontology Language

RDBMS Relational Database Management System

RDF Resource Description Framework

REST Representational state transfer

SPARQL Query language and a protocol for accessing RDF

SQL Structured Query Language

UML Unified Modelling Language

VCaaS Visual Computing as a Service

VKG Virtual Knowledge Graphs

W3C World Wide Web Consortium

 D2.1 Requirements and use case specification

Page 5 of 89

Table of Contents

1	 INTRODUCTION	 7	
1.1	 OBJECTIVES	AND	GOALS	OF	THE	DELIVERABLE	 7	
1.2	 RELATION	TO	OTHER	WORK	PACKAGES	 7	
2	 OVERALL	METHODOLOGY	APPROACH	 8	
3	 USE	CASES	DESCRIPTION	AND	REQUIREMENTS	 9	
3.1	 PROJECT	DEFINITION	 9	
3.1.1	 WHAT	IS	INODE?	 9	
3.2	 RESEARCH	AND	INNOVATION	POLICY	MAKING	 10	
3.2.1	 OVERALL	DESCRIPTION	 10	
3.2.2	 STAKEHOLDERS	DEFINITION	AND	MODE	OF	INTERACTION	 13	
3.2.3	 DATA	PROVIDED	AND	QUERY	EXAMPLES	 16	
3.2.4	 USE	CASE	DETAILED	DESCRIPTION	 18	
3.2.5	 REQUIREMENTS	SUMMARY	 24	
3.3	 ASTROPHYSICS	 24	
3.3.1	 OVERALL	DESCRIPTION	 24	
3.3.2	 STAKEHOLDERS	DEFINITION	AND	MODE	OF	INTERACTION	 26	
3.3.3	 DATA	PROVIDED	AND	QUERY	EXAMPLES	 27	
3.3.4	 USE	CASE	DETAILED	DESCRIPTION	 29	
3.3.5	 REQUIREMENTS	SUMMARY	 35	
3.4	 CANCER	BIOMARKER	RESEARCH	 35	
3.4.1	 OVERALL	DESCRIPTION	 35	
3.4.2	 STAKEHOLDERS	DEFINITION	AND	MODE	OF	INTERACTION	 37	
3.4.3	 DATA	PROVIDED	AND	QUERY	EXAMPLES	 41	
3.4.4	 USE	CASE	DETAILED	DESCRIPTION	 44	
3.4.5	 REQUIREMENTS	SUMMARY	 49	
4	 TECHNICAL	AND	SYSTEM	LEVEL	REQUIREMENTS	 50	
4.1	 INTEGRATED	QUERY	PROCESSING	(WP3)	 50	
4.1.1	 TECHNOLOGY	ELEMENTS	INVOLVED	 50	
4.1.2	 RELATION	TO	INODE	 51	
4.1.3	 REQUIREMENTS	IMPLIED	BY	THE	TECHNOLOGY	ELEMENTS	 51	
4.2	 DATA	LINKING	AND	MODELLING	(WP4)	 52	
4.2.1	 TECHNOLOGY	ELEMENTS	INVOLVED	 52	
4.2.2	 RELATION	TO	INODE	 53	
4.2.3	 REQUIREMENTS	IMPLIED	BY	THE	TECHNOLOGY	ELEMENTS	 54	
4.3	 DATA	ACCESS	AND	EXPLORATION	(WP5)	 54	
4.3.1	 TECHNOLOGY	ELEMENTS	INVOLVED	 54	
4.3.2	 RELATION	TO	INODE	 55	
4.3.3	 REQUIREMENTS	IMPLIED	BY	THE	TECHNOLOGY	ELEMENTS	 56	
4.4	 USER	ASSISTANCE	SERVICES	(WP6)	 56	
4.4.1	 TECHNOLOGY	ELEMENTS	INVOLVED	 56	
4.4.2	 RELATION	TO	INODE	 57	
4.4.3	 REQUIREMENTS	IMPLIED	BY	THE	TECHNOLOGY	ELEMENTS	 59	
4.5	 MULTI-MODAL	DISCOVERY	SERVICES	(WP7)	 59	
4.5.1	 TECHNOLOGY	ELEMENTS	INVOLVED	 59	

 D2.1 Requirements and use case specification

Page 6 of 89

4.5.2	 RELATION	TO	INODE	 59	
4.5.3	 REQUIREMENTS	IMPLIED	BY	THE	TECHNOLOGY	ELEMENTS	 61	
5	 REQUIREMENTS	CONSOLIDATION	AND	CATEGORIZATION	 62	
6	 CONCLUSIONS	 80	
REFERENCES	 81	
LIST	OF	FIGURES	 82	
LIST	OF	TABLES	 83	
ANNEX:	SQL	QUERIES	 84	

 D2.1 Requirements and use case specification

Page 7 of 89

1 INTRODUCTION

1.1 Objectives and goals of the deliverable

The current document is the deliverable ‘D2.1 Requirements and use case specification’ which

comprises the major outcome of ‘Task 2.1 - Requirements specification’ and ‘Task 2.2 - Use

case specification’.

Task 2.1 specifies the functional and non-functional requirements of INODE. Specific tasks

include the identification of the main data sets, what kinds of analysis are typically performed

by end-users, and the definition of the visualizations needed to best explore the data. Task

2.2 defines the specific use cases for the three exploration types: by-example, by-analytics

and by-natural language.

The first step in such an action is to describe a list of use cases from the partners who will

provide the pilots and validate the use cases. These will then be further analyzed and

discussed with the help of the technology partners. The use cases are described based on a

common template that highlights various characteristics such as their innovative nature,

interaction with stakeholders, data that will be provided, query examples, and requirements

for the technological base of INODE, etc. The second step is to extract, elicit, and analyze the

requirements from the perspective of the various stakeholders of the project, who will

influence the design and implementation of the INODE system and its services as a whole.

The primary audience of this document consists of people who will participate in the design

and development of the INODE system and services. This audience consists primarily of

members of the consortium who will design and implement the components and modules of

the system. Additionally, this document is of wider interest to stakeholders that are active in

the areas of EOSC, open data initiatives, and data exploration, including researchers

participating and contributing to H2020 projects under the aforementioned topics.

1.2 Relation to other Work Packages

The requirements and use cases serve as the basis for designing the overall INODE system

architecture (Deliverable D2.2 at project month 12) and are the primary reference point for

designing the individual INODE components, such as querying databases in natural language,

interactive data exploration, user assistance, and visual data exploration.

 D2.1 Requirements and use case specification

Page 8 of 89

2 OVERALL METHODOLOGY APPROACH

The analysis starts with a definition of the INODE concept, including an overview of the use

cases, use case diagrams (described through Unified Modelling Language - UML) and the

stakeholders involved so as to understand the context of the project and identify the various

stakeholders. The consortium partners then give an overview of the technologies that are

going to be involved in the project and how they will be used as a basis for the implementation

of the INODE platform. Similar projects as well as some background from previous projects

are also mentioned in order to present the state-of-the-art and previous achievements that

can be used as a starting point. Then, the elicitation of requirements is derived from the

definition of the desired functionality of the INODE system given from the perspective of both

the functional components and the non-functional attributes that the end system will expose.

Finally, the requirements are gathered and consolidated into one list, grouped and coded

accordingly, in order to provide the reference for the design, implementation and validation

phases of the project.

The following figure (Figure 2-1) summarizes the overall methodology for the requirements

analysis approach in INODE.

Figure 2-1 Requirements analysis methodology

 D2.1 Requirements and use case specification

Page 9 of 89

3 USE CASES DESCRIPTION AND REQUIREMENTS

3.1 Project Definition

3.1.1 What is INODE?

To date, the scientific community has a wide variety of tools and APIs for managing and

querying big and heterogeneous data sets. However, there are still several limitations that

make accessing and combining data from different sources non-trivial, time-consuming, and

user unfriendly for the different stakeholders of the data ecosystem. These limitations are

further outlined below.

(1) Existing search interfaces are cumbersome and non-intuitive for most users. Specialized

query languages such as SPARQL or SQL are not meant to be used by most users. On the other

hand, keyword search interfaces are very simplistic and return flat lists of results, which does

not help users understand and leverage data. Hence, the ability of users to explore data sets

heavily depends on their technical and domain expertise.

(2) Users are not familiar with open datasets. There are two challenges that lie with open data.

First, their exact contents and data structure are usually unknown to most users. Second,

users may not have well-defined information needs over open data. They may only have some

intuition about the data, and not know exactly what to ask, where to look for it, what they

need, or how to interpret a result.

(3) Combining data from different data sets is difficult. Combining data residing in more than

one dataset can uncover rich information and insights. However, to do so, one needs to

identify which datasets can be linked and how - a process that is time-consuming and

challenging even for expert users. Some data scientists estimate that up to 80% of their

research time is covered by what they call “data jujitsu”, i.e., data preparation and data

management tasks.

Many efforts for collecting open data sets may be wasted if they cannot be explored easily.

Intuitive data linking, and data exploration primitives are becoming a necessity to unveil the

full potential of data sets to all users.

The INODE project addresses the above challenges and targets open gaps in the data

exploration service offering of the EOSC-hub. The core principle of INODE is that users should

interact with data in a more dialectic and intuitive way, similar to human dialog. To achieve

this principle, INODE will offer a suite of agile, fit-for-purpose, sustainable services for

exploring open data sets that help users (a) link and leverage multiple datasets, (b) access and

search data using natural language, examples, and analytics, (c) get guidance from the system

in understanding the data and formulating the right queries, and (d) explore data and discover

new insights through visualizations. This is achieved through INODE’s parallel services:

OpenDataDialog and OpenDataLink. OpenDataDialog enables end-users (e.g., scientists) to

perform intuitive queries in natural language with the support of data exploration capabilities

(e.g., query suggestions, interactive visualizations), helping them to fully grasp the underlying

data structures and maximize insights. OpenDataLink is mostly targeted at domain experts

who already have the technical skills to navigate through complex datasets but lack an

effective toolkit to link, query, and generate structured knowledge from heterogeneous

sources. INODE can meet the different demands of autonomous data exploration with

 D2.1 Requirements and use case specification

Page 10 of 89

OpenDataDialog by accelerating knowledge extraction through sophisticated semantic

queries across large data sets, and with OpenDataLink by providing the necessary data

management infrastructures to help users unlock the full potential of multiple data

integration.

Our service offering is formed by and will initially respond to the needs of large and diverse

scientific communities brought by our three use case providers: (a) Research and Innovation

Policy Making, (b) Astrophysics, and (c) Cancer Biomarker Research.

The following subsections give a detailed analysis of the selected INODE use cases, which will

lead to the specification of the overall system as well as the implementation and

validation/evaluation of the service offering.

A common aspect across our use cases is a detailed characterization of different user roles.

User roles reflect a variety of domain, data, and technical expertise. They also reflect different

user needs and different ways of exploring data. User roles are referred to with different

names in individual use cases. For instance, a domain expert is a policy maker in our first use

case, an astronomy scientist in our second use case, and a biologist in our third use case. Any

given user in INODE, a domain expert, a use case provider, a data scientist, a novice end-user,

may have a mix of roles. INODE will cater to all those roles by providing different levels of

guidance, i.e., recommendations and explanations, in expressing exploration queries and

pipelines, and enabling different user feedback according to their expertise. For instance, a

data scientist will be proficient in expressing complex data processing operations but may

know little about the actual domain-specific needs. A domain expert, on the other hand, will

have extensive knowledge about the needs in a particular domain and will benefit from

guidance in expressing those needs with INODE exploration queries and pipelines. A novice

user will need guidance in the entire exploration process, and INODE will provide

recommendations and explanations of results, while the user may only be able to provide

minimal feedback on data. A system administrator or data curator will benefit from the ability

to select subsets of the data for which different configurations and permissions need to be

set. While INODE does not focus on access control functionality, it provides the ability to

identify different subsets of input datasets, enabling their effective management, access, and

exploration.

3.2 Research and Innovation Policy Making

3.2.1 Overall description

The main goal of INODE in the context of Research and Innovation (R&I) policy making is to

allow policy makers, who tend to be non-technical users, access a collection of relevant

datasets in a homogeneous way so that they can make informed decisions (and move towards

what is commonly called evidence-based policy making). This applies to decision-makers both

within organisations that fund and perform research and innovation, that is, regional

governments, foundations, etc. as funders of R&I, and within universities, research centers,

etc. as performers of R&I.

The end-users of this use case domain are therefore policy makers, administrators, and

scholars from public organisations, private foundations, corporations, agencies, and

companies that (i) are actors in the creation of the future R&I sector, or (ii) have the

 D2.1 Requirements and use case specification

Page 11 of 89

responsibility of managing its evolution. Figure 3-1, Figure 3-2 and Figure 3-3 below, show a

typical usage scenario for INODE, where a policy maker from a regional government has the

following information need “I need to understand how much the scientific work of the scholars
from the public research institutions in my region has also generated a potential for the
creation of economic value in the recent years”.

Figure 3-1 The figure first shows how INODE supports a user in disambiguating a query based on an
existing data sample and a knowledge graph that provides structure to the introduced query

dimensions. In the second interaction, we see how INODE expands the answers (which can be ‘easily’
retrieved from the EU-CORDIS repository) thanks to the integration of the OpenAIRE data about EU-

funded projects’ publications.

This scenario is tackled by INODE through exploration operators (by-example, by-filter, by-

join, etc.), explanations that allow INODE to ask the user questions in natural language, and

through recommendations. In the workflow shown in Figure 3-1, the analyst starts with a

sample dataset of EU-funded projects and uses by-example to find similar projects. The

system asks for clarification using natural language explanations. The analyst then uses by-
filter to find partners located in Tuscany among those projects. Finally, the analyst asks for

another by-join to augment the results with additional attributes such as acronym, title, EC

program, start-date and end-date.

 D2.1 Requirements and use case specification

Page 12 of 89

Figure 3-2 Here INODE relies on the integration with yet another repository that is managed by the
European Patent Office (EPO) called ESPACENET. Notice that the above scenario is particularly difficult
to deal with. On the one hand, the required data integration among EPO, OpenAIRE, and CORDIS is not

straightforward. On the other hand, the currently available open repositories on patents (such as
ESPACENET) do not provide structured information about the references to scientific publications yet.
Analytically, INODE is finally able to show the requested records by joining the scholars of the Tuscan

universities (see, CercaUniversità CINECA) with the previously retrieved data.

Similarly, in the workflow shown in Figure 3-2, the analyst uses by-join to query the open

repository on patents (ESPACENET) and join it with the scholars from the CercaUniversità

CINECA Tuscan universities who published between 2010 and 2018. The final step of the

analysis, illustrated in Figure 3-3, requires further use of by-filter to retrieve the data needed

to create the ranking of European regions that answers the user’s information need. The

system uses natural language explanation to describe the results retrieved.

Figure 3-3 In the last step of the interaction, INODE accesses data from EUROSTAT in order to find the
Tuscany-related baseline. Afterwards, INODE retrieves the data about European regions in order to

recreate the ranking needed and finally computes the value for the required indicator.

 D2.1 Requirements and use case specification

Page 13 of 89

As shown in this example (Figure 3-3), R&I data relevant for R&I decision makers is usually

located in disconnected sources, under different formats, and with different structures. This

is an ideal scenario for applying solutions based on virtual knowledge graphs (VKGs)1 as

intended in INODE (see also Section 4.1.1). In this sense, INODE will provide the tools needed

to help bring together all of these disconnected sources in an open and interoperable fashion.

In summary, evidence-based policy making is one of the major areas that INODE will impact,

most notably the following ways: (a) Integrating data between research inputs and outputs,

will allow for econometric impact estimation; (b) Integrating actor-based data with network-

based data (collaborations, mobility, co-authorship, and co-invention) for examining policy

impact on networking and knowledge flows; and (c) Integrating institution-based data with

geographic data for analysing the impact of policies at both the local and regional level.

3.2.2 Stakeholders definition and mode of interaction

Who are the users/stakeholders?

Policy makers:

The main profile of users in this use case are non-technical officials from universities, public

organizations, foundations, etc. that expect to perform queries, in which all of the calculations

are already done for them (in SQL terms, these are queries with aggregation functions such as

count, sum, etc. with some filters applied to them). In contrast with technical users who prefer

to get the raw data and do the calculations themselves, policy makers prefer to have the

system do it for them.

Typically, these users are not capable of exploiting SPARQL endpoints (which typically provide

access to the -limited- R&I open data sources) since they do not have the technical skills to

formulate SPARQL queries, even if they are not after particularly complex results. In the end,

what these users expect to obtain by querying those sources is a table with which they can

work offline, most typically in Excel. The main goal of these queries is to get a picture of the

ongoings within their institution, so they can make informed decisions. This profile is therefore

the perfect target of the Natural Language (NL) and exploration services of INODE. NL querying

would solve the aforementioned SPARQL knowledge problem, and allow policy makers to

pose specific queries to the system by themselves. Exploration would help in cases where they

want to investigate some aspect of how the institution is performing, but do not have an exact

query in mind. Policy makers could indirectly construct a query, step by step, by applying the

exploration operators, starting from an initial set of objects of interest, or by selecting queries

that INODE recommends based on the context.

1 The virtual knowledge graph approach to data access and data integration is commonly known in the
literature also as ontology-based data access/integration (OBDA/OBDI).

 D2.1 Requirements and use case specification

Page 14 of 89

Statisticians:

Although not extremely common in many of our projects, technical users within statistical

offices are also included within this use-case scenario. Differently from the non-technical

users (who, as mentioned, expect the queries to do all the calculations for them), this kind of

user prefers to get the relevant raw data from the system and do the analysis themselves with

their own tools. In this sense, they are more interested in having an API-like interface, with

predefined queries that can be parameterized to get a dump of the data relevant to their

study.

Citizens:

Sometimes, the general public is among the data consumers relevant to this use-case. This is

typical of public institutions that want to use the system, not just for their internal strategy,

but also as a form of public accountability. Citizens would have access to a public portal with

informative visualizations, possibly embedded in a narrative that gives them context,

following a story-telling approach.

Data administrator:

From a system administration point of view, the most important figure in the present case, is

that of the person who manages the data sources. This profile appears when institutions want

to have complete control of the system, which means having the data on their own servers

and being able to administer them themselves.

System administrator:

As with any system, there should be someone who administers the whole system. Again, this

could be SIRIS or the client. It is unclear whether this level of administration would be done

through the system itself or from the outside (e.g., by editing configuration files directly on

the server’s filesystem).

How is every stakeholder/user interacting with application/service?

Table 3-1 R&I Stakeholders table.

Stakeholder/User Role Interacting functionalities

Policy maker Performs both specific queries
and explorations.

Regarding specific queries:

1. Writes a query in natural language.

2. Gets a tabular result together with a NL
explanation and some recommendations
for related queries.

3. Refines the query, if needed, based on
the NL explanation.

4. Once satisfied with the query, downloads
the result as a CSV.

5. Selects one of the recommended queries
that seems relevant to the study and
refines it, if necessary (then goes back to
point 2).

 D2.1 Requirements and use case specification

Page 15 of 89

Regarding exploration:

1. Writes a NL query to get an initial set of
objects. Alternatively, selects a
predefined query from a catalogue
(possibly organized by topic, such as
teaching, human resources, research,
etc.) and refines it.

2. Applies an exploration operator on the
result of the NL query (probably by
example or by analytics). Optionally, from
the perspective of the policy makers user
group, it would be nice if it were possible
to select how to see the result, for
instance, just as a table or through some
visualization. Additionally, it would be
even better if the system could
recommend a visualization based on the
type of data.

3. Keeps on applying exploration operators
until a relevant result is reached. Then,
downloads the data as a CSV. From the
perspective of the policy makers user
group, it would be also very interesting if
it were possible to save the exploration
sequence itself. That way it would be
repeatable in the future (which could be
interesting since the datasets are
periodically updated). This could be done
by storing previous explorations as part of
the user’s profile in the system or maybe
even downloading it in some format.

Statistician Downloads relevant portions
of raw data from the system

Regarding specific queries:

1. Selects an NL query from a predefined
catalogue or writes an NL query and
refines it by adding the appropriate
filters.

2. Downloads the result as a CSV.

Regarding exploration:

1. Writes an NL query to get an initial set of
objects. Alternatively, selects a
predefined query from a catalogue

2. Applies an exploration operator on the
result of the first query, most likely by-
example and/or by-analytics

3. Keeps on applying exploration operators
until a relevant result is reached. Then,
downloads the data as a CSV.

 D2.1 Requirements and use case specification

Page 16 of 89

Citizen Accesses a public website with
some story-telling and
predefined visualizations.

Interacts with the visualizations by setting
filters and in some cases, by clicking on a
certain part of the visualization to get more
details on certain aspects, and with result
summaries explained in natural language.

Data
administrator

Edits the mappings between
the database(s) and the
ontology in the context of the
VKG approach.

After an update of an already integrated data
source, new attributes may be available (e.g.,
in CORDIS at some point the VAT of the
participants was added). To make this new
information available in the system, the data
administrator has to:

1. Get access to the mappings

2. Edit them

3. Refresh the system.

If a new data source is to be integrated, the
data administrator has to:

1. Use the mapping bootstrap functionality
to get a first mapping candidate.

2. Refine the proposed mapping.

3. Refresh the system.

System
administrator

Manages the overall system Either logs in and makes changes to the
system’s configuration from within the system
itself (e.g., via an online interface), or just edits
configuration files directly on the server’s
filesystem.

Who will be the first user groups to use and test the system?

Since the main user profile of this use-case is that of policy maker, a group of users matching

this profile will be selected. Three people within SIRIS (the use-case provider) that work in

collaboration with policy makers and that are not involved in the INODE project have been

selected to mimic this profile. The first user group will have a level of technical skills higher

than the average policy maker, however we consider that this is required in order to test the

first prototype, since it will most likely not be as user-friendly as the final version. For later

iterations, with a more refined user interface, we will identify a second group of test users

with technical knowledge closer to that of the average end user.

3.2.3 Data provided and query examples

Data provided

Datasets for this use-case come from open data sources in the Research and Innovation field.

The main one is the CORDIS dataset, which includes data on European-funded research

projects, but we also have data from other European projects such as Erasmus+. Other

available datasets contain data that was collected at a more national level. For example, we

 D2.1 Requirements and use case specification

Page 17 of 89

have several open datasets from the Italian university system, including aggregated numbers

of students, researchers, courses, etc.

Other datasets of interest (which SIRIS has not yet worked with) include Patents (the
European Patent Office (EPO) has an RDF dump) and research outputs from projects
(publications, deliverables, etc.). The latter could be obtained from OpenAIRE, which also has

an RDF dump, and could connect these research outputs to CORDIS projects.

In terms of size, the datasets that we have dealt with so far are not huge. The following

examples are representative of the size of datasets that we have dealt with in the past:

● CORDIS has around 50k projects

● Erasmus+ has 127k projects

● the Italian student data has a dozen tables with numbers of rows around 100k

The EPO and OpenAIRE datasets would be significantly larger. For example, EPO has more

than 24 million patents.

The data update frequency depends on the data source, but it is not high. It ranges from every
two or three months to once or twice a year.

The format of the data also depends on the data source. It can be XML, CSV, or in some cases

extracted from the web. We have ETL processes that perform webscraping and import the

data into a relational database.

Queries (NL + SQL)

These are a set of individual queries executed on the CORDIS dataset from our clients.

Query 1

Natural language: Retrieve the yearly percentage of H2020 and FP7 funding obtained by the

region Tuscany.

SQL: See UC2-Q1 in Annex.

Description: This query does two aggregations. The first calculates the sum of the funding

obtained by participants in CORDIS projects (filtered by H2020 and FP7 programs) that are

located in Tuscany (the NUTS 2 code of Tuscany is “ITI1”, where NUTS is the “nomenclature

of territorial units for statistics” used by Eurostat) for each year. The second calculates the

total funding given by the European Commission to H2020 and FP7 projects each year. Finally,

the query calculates the percentage of funding Tuscany has received from H2020 and FP7

projects each year.

Query 2

Natural language: Calculate the number of projects and funding of the Tuscan participants in

H2020 projects, showing also their activity type.

SQL: see UC2-Q2 in Annex.

Description: This query retrieves the participants in CORDIS projects (filtered by the H2020

program) that are from Tuscany and shows the activity type for each of them (i.e. the type of

organization), the number of projects in which it has participated, and the total funding

received.

 D2.1 Requirements and use case specification

Page 18 of 89

Query 3

Natural language: Show, for each Tuscan participant in H2020 and FP7 projects and their

partners, the list of programs in which they have participated each year.

SQL: see UC2-Q3 in Annex.

Description: This query lists both Tuscan organizations and partners of Tuscan organizations

in CORDIS projects (H2020 and FP7 programs), showing, for each year, the programs in which

they participated.

Query 4

Natural language: Count the number of ERC projects of Spain and Portugal for each research

domain and year.

SQL: see UC2-Q4 in Annex.

Description: This query calculates the number of ERC projects (within the H2020 program) of

Spain and Portugal, grouped by year and research domain. Research domains are derived from

the panel that evaluated each program.

Query 5

Natural language: Retrieve the top 100 partners of Tuscan private companies in H2020 and

FP7 programs, showing the partner’s nationality and the number of collaborations.

SQL: see UC2-Q5 in Annex.

Description: This query creates a ranking with the top 100 partners of Tuscan private

companies in the FP7 and H2020 programs. It shows the nationality of each partner (Tuscan,

Italian or Non-Italian) and the number of projects they have in collaboration with Tuscany.

3.2.4 Use case detailed description

In this section, we describe the functional requirements in more detail for the policy maker,

statistician, citizen, and data administrator profiles. Figure 3-4 shows the overall use case

diagram. Further details are provided in the tables below.

 D2.1 Requirements and use case specification

Page 19 of 89

Figure 3-4 Use case diagram for R&I.

Table 3-2 Detailed view of the R&I use case.

Name Query in natural language
Identifier UC1.1
Description The user writes a query in natural language. The system executes the

query and displays the result.

Goal To allow the user to formulate a query to the system using natural
language and get the result.

Scope Query answering and exploration.

Preconditions The user provides the natural language text in English.
Post conditions The result of the query is displayed.
Actors / Users

Policy maker

Dependencies from other
functionalities/steps

None

Exceptions No candidate query can be generated.

 D2.1 Requirements and use case specification

Page 20 of 89

The query result is empty.
Notes/Comments

None

Name Choose among a ranked list of candidate queries
Identifier UC1.2
Description Due to the ambiguity of a natural language, the system replies with

a ranked list of candidate queries that match the user’s request.
Goal To allow the user to disambiguate their initial natural language

expression.

Scope Query answering and exploration.

Preconditions The user provides the natural language text in English.
Post conditions The candidate queries are displayed, ranked according to the

likeliness of matching the user’s intention.
Actors / Users

Policy maker

Dependencies from other
functionalities/steps

UC1.1

Exceptions No candidate query can be generated.
Notes/Comments

None

Name Explanation of queries in natural language
Identifier UC1.3
Description The system explains each candidate query to the user using natural

language.

Goal To provide a natural language description of the candidate queries
that correspond to the user’s initial natural language expression.

Scope Query answering and exploration.

Preconditions The natural language text in English is provided.
Post conditions The candidate queries are displayed, each of them annotated with a

natural language description of its meaning.
Actors / Users

System

Dependencies from other
functionalities/steps

UC1.2

Exceptions No candidate query can be generated.
Notes/Comments

None

Name Show query result
Identifier UC1.4
Description The user writes a query in natural language and, after selecting the

appropriate candidate, the result of the query is displayed.
Goal To show the result of the natural language query to the user.

Scope Query answering and exploration.

 D2.1 Requirements and use case specification

Page 21 of 89

Preconditions The natural language text in English is provided.
Post conditions The query result is displayed.
Actors / Users

System

Dependencies from other
functionalities/steps

UC1.1, UC1.6

Exceptions Query result is empty.
Notes/Comments

None

Name Download query result in CSV
Identifier UC1.5
Description The user downloads the query result in CSV format.
Goal To allow the user to download the result of the disambiguated query

in CSV format. Such a query is the result of choosing one of the
candidate queries that match the original ambiguous natural
language expression issued by the user.

Scope Query answering and exploration.

Preconditions A non-ambiguous query is provided.
Post conditions The result of the query is sent back to the user in CSV format.
Actors / Users

Policy maker, statistician

Dependencies from other
functionalities/steps

UC1.4

Exceptions Query result is empty.
Notes/Comments

None

Name Select query from catalog
Identifier UC1.6
Description The user selects a natural language query from a predefined catalog.

The query may have some filters with placeholders that the user can
fill in so as to obtain just the data that is relevant. The disambiguation
of the query should not be necessary, either because the query is
already formulated in a non-ambiguous way, or because the
appropriate candidate query is already known by the system.

Goal To show a predefined catalog of frequently used queries that the
user can refine by filling in some of the offered filters.

Scope Query answering and exploration.

Preconditions A catalog of queries, potentially with some filters, has been defined
in the system.

Post conditions The user has selected one query from the catalogue and filled in
some of its filters.

Actors / Users

Statistician

Dependencies from other
functionalities/steps

None

Exceptions The catalog is empty.
Notes/Comments None

 D2.1 Requirements and use case specification

Page 22 of 89

Name View/select recommended related queries
Identifier UC1.7
Description After performing a query in natural language, the system

recommends to the user some other related queries, also formulated
in natural language.

Goal To recommend to the users queries in natural language that are
related to the previous search.

Scope Query answering and exploration.

Preconditions The user has already issued a query to the system, which has been
successfully executed.

Post conditions A list of natural language queries related to the previous user query
is displayed.

Actors / Users

Policy maker

Dependencies from other
functionalities/steps

UC1.1

Exceptions No previous query has been successfully issued by the user.
Notes/Comments

None

Name Exploration via operators
Identifier UC1.8
Description After performing a natural language query to get an initial set of

objects, the user can construct, in an iterative way, a pipeline of
exploration operators.

Goal To allow the user to explore the data via the iterative application of
operators.

Scope Query answering and exploration.
Preconditions The user has already issued a query to the system, which has been

successfully executed.

Post conditions The user has constructed a pipeline of exploration operators, starting
with the set of objects resulting from the previously issued query.

Actors / Users

Policy maker

Dependencies from other
functionalities/steps

UC1.1

Exceptions No previous query has been successfully issued by the user.
Notes/Comments

None

Name See predefined visualizations connected via storytelling
Identifier UC1.9
Description Citizens can access a website with a predefined set of visualizations

that are put in context by a narrative.
Goal To communicate to the general public, using data and a storytelling

approach that provides context to this data.
Scope Storytelling.
Preconditions The visualizations and storytelling have been defined in the system.
Post conditions The user sees the visualizations and connecting narrative in the

browser.

 D2.1 Requirements and use case specification

Page 23 of 89

Actors / Users

Citizen

Dependencies from other
functionalities/steps

None

Exceptions The website is not available.
Notes/Comments

None

Name Bootstrap ontology and mapping from new datasource
Identifier UC1.10
Description The system assists the data administrator in integrating a new data

source by generating an initial ontology and set of mapping rules.
Goal To create an ontology and mapping based on a new data source

structure.
Scope Data integration.
Preconditions The parameters necessary to connect to the data source are

provided.
Post conditions An ontology and mapping for the data source have been generated.
Actors / Users

Data administrator, system

Dependencies from other
functionalities/steps

None

Exceptions The data source is not accessible.
The specification of the data source is not rich enough to allow the
construction of an ontology and mapping.

Notes/Comments

None

Name Edit mapping
Identifier UC1.11
Description The data administrator gets access to the mapping for a particular

dataset and edits it via some interface.
Goal To allow the data administrator to refine existing mappings for the

integrated data sources.
Scope Data integration.
Preconditions An ontology and mapping are available for a given data source.
Post conditions The data administrator has edited the mapping, and potentially also

the ontology specification.
Actors / Users

Data administrator

Dependencies from other
functionalities/steps

UC1.10

Exceptions No mapping and ontology are available for the given data source.
Notes/Comments

None

Name See summaries of results in natural language
Identifier UC1.12
Description Citizens can see the results of a set of predefined queries explained

in natural language.

 D2.1 Requirements and use case specification

Page 24 of 89

Goal To complement the storytelling addressed to the citizen’s with a
natural language explanation of relevant data.

Scope Storytelling
Preconditions The queries to be explained have been defined in the system.
Post conditions The user sees the natural language explanations in the browser.
Actors / Users

Citizen

Dependencies from other
functionalities/steps

UC1.9

Exceptions The website is not available.
Notes/Comments

None

3.2.5 Requirements Summary

The requirements elicited by this specific use case are provided in the consolidated table

(Table 5-1) under Category R1, Group 2 (specifically the requirements R1.2.2-R1.2.4, R1.2.6-

R1.2.17 and R1.2.27).

3.3 Astrophysics

3.3.1 Overall description

INODE will allow scientists to react immediately to new events by taking away the painstaking

procedure of finding out what other relevant datasets exist, and then going through the

process of familiarizing oneself with those to the level where scientific questions can actually

be asked. Examples from astrophysics include - but are by far not limited to - supernovas,

gamma ray bursts, gravitational wave events, or the recently discovered elusive fast radio

bursts. Unpredicted occurrences of new properties or clusters of data naturally make

scientists want to compare them against previous data. These are often stored in very

different formats and/or locations.

Modern astrophysics collaborations need to analyze dozens of databases at a time. As a

consequence, it becomes increasingly challenging for scientists to penetrate the structure of

the data and their metadata to generate scientific knowledge. INODE takes away the burden

from scientists to design several thousand-character-long nested SQL statements and

programming routines by providing them with more intuitive means to interact with the data,

such as to simply ask in NL “What is the density of blue and star forming galaxies in a certain

region of the sky?”. INODE will speed up the ability to test scientific questions and to probe if

their detailed pursuit is promising. INODE will provide an interface to data to allow for these

questions to be formulated as naturally as possible. Additionally, these questions will be

answered in an efficient manner.

On the one hand, unusual objects will be discovered faster, and grouped together more

quickly through queries by-example. Once groups of objects have been identified,

fundamental questions about their nature can be asked (e.g., “When in cosmic time were

these galaxies built, what are their other intrinsic properties like star formation rates or

metallicity?”). Additional information, e.g., spectroscopic data for objects discovered in

 D2.1 Requirements and use case specification

Page 25 of 89

imaging surveys, or UV/infrared/radio data for objects discovered by gravitational wave

emission will be accessible, convenient and available to the entire astrophysical community

rather than just experts of the respective databases (Figure 3-5). Even theoreticians or

enthusiasts will be able to generate queries without needing to understand the intricacies of

the many underlying datasources, test their ideas and generate theories on the nature of

newly discovered objects. INODE is expected to speed up the scientific process, and increase

the amount of generated knowledge per time unit.

Figure 3-5 Green Pea galaxies recently gained a fair bit of attention in astronomy as one of the
potential sources that drove cosmic re-ionization. First discovered in the Galaxy Zoo project2, they

appeared green and compact in the recorded imaging data and fall into an unusual region of color-
color diagrams of galaxies. A consequent selection in color space led to a detection of a large sample
of objects that all exhibit strong emission lines and unusually high star formation rates that are much

more common in the very young Universe. The figure shows three queries by example (QBE) of
analyzing astrophysics data with INODE.

Here are some specific workflows of an astrophysics analysis: The analyst is a domain expert
who wants to identify galaxies of interest. The analyst starts with an unusual class of galaxies

and uses by-example to find groups of similar galaxies. The analyst observes that the results

are all compact in appearance and have high star formation rate. The analyst uses by-facet to

break down that group by density, size, magnitude etc. The analyst uses by-query to obtain

spectral properties of objects. The analyst observes that their emission lines are strong and

asks for by-analytics on those distributions to find groups of objects with similar and dissimilar

emission lines. The analyst finds spectra with similar relative ratios and strength of emission

lines. Once groups of objects have been identified, the analyst can use by-NL to answer “When

in cosmic time were these galaxies built, what are their other intrinsic properties like star

formation rates or metallicity?”

2 Galaxy Zoo (https://www.zooniverse.org/projects/zookeeper/galaxy-zoo/) is a popular and rather
successful implementation of the crowd sourcing idea: It lets, through a very simplified online interface,
inspect large quantities of astronomical (and now also other objects), by users drawn from the general
public. This allows a much larger number of objects to be screened that would be feasible though the
limited group of scientists.

 D2.1 Requirements and use case specification

Page 26 of 89

3.3.2 Stakeholders definition and mode of interaction

Who are the users/stakeholders?

We foresee the following principal classes of users:

DB Administrator

Responsible for hosting the databases, access (e.g., Web) and the INODE infrastructure and

architecture. Should retrieve data and access permissions from the data curators (see b).

Data Curators

These will be mostly scientists with access to specific astronomical data sets either through

their affiliation with a particular project or a specific astronomical institution. Their

responsibility is to i) make the data available in a format (e.g., SQL dump) that is ingestible by

the tools developed within INODE and to provide appropriate data mappings ii) as well as

define access rights. For proprietary or partially proprietary datasets, access needs to be

restricted to the subgroup of users (see below) with appropriate access rights. The data

curators will carry the responsibility to set the permissions and to update the permissions as

proprietary periods are ending. We don’t foresee any “write” access to databases. The only

level of access control to particular tables will be “is allowed to read” or “is not (yet) allowed

to read”.

Scientists with proprietary access

These will be mostly scientists with access to specific astronomical data sets either through

their affiliation with a particular project or a specific astronomical institution. The scientists

will not change the data sets but they will be allowed to access them (read only).

General public

Many/most astronomical datasets are open to the general public or do become public after

some proprietary period. The “general public” should be the generic unauthenticated user

that has read access to all data that does not fall under some proprietary protection. “General

public” specifically also includes non-astronomers.

How is every stakeholder/user interacting with application/service?

The following table give an overview of how the stakeholders interact with the various

applications and services of INODE.

Table 3-3 Astrophysics Stakeholders table.

Stakeholder/User Role Interacting functionalities

DB administrator

Hosts databases, INODE
infrastructure.

Will be notified by data
curators as new data
sources become available.

Data curator Responsible for integrating new data
sources.

Defines data mappings.

 D2.1 Requirements and use case specification

Page 27 of 89

Responsible for updating already
ingested data sources, e.g., after data
releases.

Appropriately forwarding access
control to datasets (proprietary vs.
non-proprietary datasets).

Delivers data sources to DB
administrators.

Scientists with proprietary
access

Performs queries to the DB. Executes queries in natural
language. Receives answers
in tabular form (ideally in a
new table).

Discerns whether the result
answers the questions,
refines the query if needed.

May want to rerun a
modified query or a
different query based on the
results of the first. This may
involve visualisations of the
data to define/find
interesting parameter
ranges to define sub
populations of datasets.

General public Same as the Scientist, but with access only to unprotected datasets.

Who are going to be the first user groups to use and test the system?

The astronomers involved in INODE will be the immediate test users for the system. An effort

will be made to extend the group to other astronomers. Allowing access to the general public

(or a proxy for the general public, e.g., students) is a goal but will require a relatively mature

system.

3.3.3 Data provided and query examples

Data provided

As a first trial dataset a dump of the SDSS database has been provided.

The latest version is DR16. Beyond this, potential datasets encompass the databases from the

Dark Energy public data release, the PanSTARRS public data release, proprietary data from the

HETDEX project and the eRosita space mission (https://www.mpe.mpg.de/450415/eROSITA).

 D2.1 Requirements and use case specification

Page 28 of 89

Queries (NL + SQL)

A number of SDSS queries have been made available to the project that exemplify the

interaction of researchers with the SDSS dataset and a sample of such queries are listed below.

Query 1

Natural language: Retrieve the unique object ID and coordinates of 100 photometric objects

that have the right ascension between 185 and 185.1, and declination between 15 and 15.1.

SQL: See UC3-Q1 in Annex

Description: This sample query searches the sky position defined by ra and dec, finds unique

objects in an ra/dec box and prints the unique object IDs and coordinates of the first 100

records.

Query 2

Natural language: Retrieve the unique object ID and the distance of the galaxies within 1

arcmins of an equatorial point with ra =185.0, dec =-0.5.

SQL: See UC3-Q2 in Annex

Description: This sample query searches the galaxies within 1 arcminutes of ra, dec and

order it with respect to the distance.

Query 3

Natural language: Retrieve the photometric properties and redshift of 10 stars from all fields

whose U magnitude is between 0 and 15

SQL: See UC3-Q3 in Annex

Description: This query does a table JOIN between the imaging (PhotoObj) and

spectra(SpecObj) tables of stars with U magnitude in between 0 and 15.

Query 4

Natural language: Give me the colors of a random 1% sample of galaxies from all fields

SQL: See UC3-Q4 in Annex

Description: This query uses htmID as a random number generator. HtmID is multiplied by a

prime number (37) to remove bias and then constrained to be between 650 and 65000 to

generate 1% random sample of data.

Query 5

Natural language: finds galaxies that have clean photometry with at least 10 Galaxy Zoo

volunteer votes and at least an 80% probability of being clockwise spirals.

SQL: See UC3-Q5 in Annex

 D2.1 Requirements and use case specification

Page 29 of 89

Description: This query identifies the galaxies with 80% probability of being clockwise spirals

and voted by minimum of 10 Galaxy Zoo volunteer.

3.3.4 Use case detailed description

Figure 3-6 Use case diagram for astrophysics.

Table 3-4 Detailed view of the Astrophysics use case.

Name Querying in natural language
Identifier UC2.1
Description The user writes a query in natural language to be executed over the

astronomical datasets. As a result, ranked candidate queries
generated based on the user input are available along with some
NL explanations. In doing so, the system provides other query
options “interpreted” by the system. By default, the results of the
best ranked candidate query are retrieved in a tabular format. For
long result sets an appropriate example subset is displayed.

Goal To retrieve results of a given query.
Scope Data curator, astronomer, and random user profiles
Preconditions The user has to write and submit a query in English.
Post conditions The information requested is displayed.
Actors / Users Data curator, astronomer, and random user

 D2.1 Requirements and use case specification

Page 30 of 89

Dependencies from other
functionalities/steps

None

Exceptions No results are found.
The query is too general.
It was not possible to generate any candidate query or none of
them are significant.

Notes/Comments Candidate queries are considered significant if they do satisfy any
aspect of the user intent.

Name Selecting query result attributes (the query projection)
Identifier UC2.2
Description This use case is to define which attributes are expected by the user

to answer her/his question. After selecting a candidate query, the
user can be interested in refining the query by adding and/or
removing attributes. For example, let us consider the following
question: “which galaxies are present in a particular sky area?”. The
answer for this question can include one or more of the following
attributes: A magnitude in a specific band, projected size, various
model fit parameters.

Goal To allow the user to choose which attributes compose the answer
for his/her question.

Scope Data curator, astronomer, and random user profiles
Preconditions The user has to select which attributes will be projected
Post conditions The information requested is displayed
Actors / Users Data curator, astronomer, and random user
Dependencies from other
functionalities/steps

UC2.1

Exceptions

None

Notes/Comments None

Name Downloading results
Identifier UC2.3
Description It provides the possibility to download the results as a ASCII file

(various formats), a spreadsheet (e.g. .xlsx), a VOTable, a FITS table,
and HDF5 file.

Goal To allow the user to download the results.
Scope Data curator, astronomer, and random user profiles
Preconditions The user has to choose the format to export the results.
Post conditions The file is downloaded
Actors / Users Data curator, astronomer, and random user
Dependencies from other
functionalities/steps

UC2.1, UC2.2, UC2.7, UC2.8, UC2.9, UC2.11

Exceptions No retrieved results to export.
Notes/Comments None

 D2.1 Requirements and use case specification

Page 31 of 89

Name Storing results in a new database table
Identifier UC2.4
Description It provides the possibility to store the results in a new database

table. This allows the researcher to use the result set
programmatically to generate plots or drive other routines.

Goal To allow the user to download the results.
Scope Data curator, astronomer
Preconditions The user has to choose the format to export the results.
Post conditions The file is downloaded
Actors / Users Data curator, astronomer
Dependencies from other
functionalities/steps

UC2.1, UC2.2, UC2.7, UC2.8, UC2.9, UC2.11

Exceptions No retrieved results to export.
Notes/Comments None

Name Displaying results
Identifier UC2.5
Description The results are mainly shown in a tabular format. New columns can

be added according to UC2.2. When applicable, it can also display
possible infographics related to the results. If the result table is
long, an appropriate subset (e.g. first 100 rows) should be
displayed.

Goal To allow the user to visualize and read the results, i.e question
answer.

Scope Data curator, astronomer, and random user profiles
Preconditions The user has to submit a query before (see UC2.1).
Post conditions The information requested is displayed.
Actors / Users Data curator, astronomer
Dependencies from other
functionalities/steps

UC2.1, UC2.2, UC2.7, UC2.8, UC2.9, UC2.11

Exceptions No results to display.
Notes/Comments None

Name Visualizing large controlled vocabularies and ontologies. Give
detailed scientific explanation of attributes.

Identifier UC2.6
Description The number of large astronomical datasets is growing quickly. A

detailed understanding of database schemas and all attributes
becomes a burden to the astronomer and an impossibility to the
random user. As INODE is specifically supposed to allow users to
query multiple datasets, this must be mapped into a common
ontology. A precise description of the ontological term meanings
and possible caveats shell be displayed here: Not all mappings may
be precise. A g band magnitude may mean something different in
different datasets. The user must be made aware of this.

 D2.1 Requirements and use case specification

Page 32 of 89

Goal To show a visual summarization of ontological term meanings.
Scope Data curator, astronomer, and random user profiles
Preconditions ontology/taxonomy/controlled vocabulary
Post conditions Visual summarization of one or more term semantics
Actors / Users Data curator, astronomer, and random user
Dependencies from other
functionalities/steps

UC2.5

Exceptions The file could not be loaded.
Term does not exist.

Notes/Comments None

Name Building a query by exploring the datasets
Identifier UC2.7
Description The user writes a query in natural language. As a result (s)he obtains

a subgraph that represents in an abstracted way how the data used
to answer a question is structured and related to other data items
(i.e. an explicit view of the data schema). Value examples are also
displayed when highlighting or selecting a given attribute of a graph
node (that can be interpreted as a class). Displaying attribute values
is important for the user because (s)he can find out what kind of
projected results to expect when executing the final built query. In
this subgraph, not only an explicit portion of the data schema to
answer the initial question is shown but also the closest neighbor
nodes and their attributes. This is done to allow the user to explore
the datasets and expand the initial query. Moreover, when
expanding the initial query, the user has the possibility to specify
attribute values, consequently, (s)he restricts the retrieved results
similar to a WHERE clause in SQL.

Goal To allow the user to interactively build a query based on an initial
exploratory question.

Scope Data curator, astronomer, and random user profiles
Preconditions The user has to write in English and submit a query.
Post conditions A subgraph that represents how the data are structured to answer

an exploratory query and their final results.
Actors / Users Data curator, astronomer, and random user
Dependencies from other
functionalities/steps

UC2.1, UC2.2, UC2.5, UC2.8, UC2.9, UC2.10, UC2.11

Exceptions No data found to answer the query.
Notes/Comments None

Name Refining the parameter ranges of a query
Identifier UC2.8

 D2.1 Requirements and use case specification

Page 33 of 89

Description The user has written a query in natural language and the result set
generally is satisfactory. But now the user wants to modify the
parameter range of a query. For instance, different magnitude
ranges in different photometric bands are queried. The SQL
equivalent would be a modification of (UMIN, UMAX, GMIN, GMAX
in the following query):
select * from galaxy where u > UMIN and u < UMAX and g > GMIN
and g < GMAX

Goal To allow the user to interactively refine a query based on an initial
exploratory question.

Scope Data curator, astronomer, and random user profiles
Preconditions The user must have already written a query in English and

submitted the query.
Post conditions An updated query result (or appropriate subset thereof) is

displayed.
Actors / Users Data curator, astronomer, and random user
Dependencies from other
functionalities/steps

UC2.1, UC2.2, UC2.5, UC2.10, UC2.9, UC2.10, UC2.11

Exceptions No data found to answer the query.
Notes/Comments None

Name Update a query based on the results of a previous query
Identifier UC2.9
Description The user has written a query in natural language and the result set

generally is satisfactory. Based on the results the user now wants
to explore the dataset in a different way. “Based on the previous
result, now show me all the objects that have a star formation rate
of more than a 100 solar masses per year.”

Goal To allow the user to interactively extend a query based on an initial
exploratory question.

Scope Data curator, astronomer, and random user profiles
Preconditions The user must have already written a query in English and

submitted the query.
Post conditions An updated query result (or appropriate subset thereof) is

displayed.
Actors / Users Data curator, astronomer, and random user
Dependencies from other
functionalities/steps

UC2.1, UC2.2, UC2.5, UC2.7, UC2.7, UC2.10, UC2.11

Exceptions No data found to answer the query.
Notes/Comments None

Name Exporting built query.
Identifier UC2.10
Description It provides the functionality to save the built query into a SQL query

file (.sql files).
Goal To export the built query in a .sql file.
Scope Data curator, astronomer, and random user profiles

 D2.1 Requirements and use case specification

Page 34 of 89

Preconditions Built a query based on UC2.6 or UC2.9.
Post conditions Display of the SQL or a downloadable file for the SQL is made

available.

Actors / Users Data curator, astronomer, and random user
Dependencies from other
functionalities/steps

UC2.1, UC2.2, UC, 1.7, UC2.8, UC2.9, UC2.11

Exceptions No data found to answer the query

Name Importing query from .sql file.
Identifier UC2.11
Description It provides the functionality to import a query from a .sql file. The

query can be then executed by the user. Edition is enabled within a
SQL query editor for the data curator and astronomer user profile.

Goal To import a query from an .sql file into the INODE system.
Scope Data curator and astronomer user profiles
Preconditions SQL query stored as a .sql file.
Post conditions Possibility to execute or edit the loaded query.
Actors / Users Data curator and astronomer
Dependencies from other
functionalities/steps

UC2.10

Exceptions Syntax file is not compliant with the rq format.
No data found to answer the query.

Notes/Comments None

Name SQL
Identifier UC2.12
Description It provides a SQL editor with auto-complete feature.
Goal SQL query edition.
Scope Data curator and astronomer user profiles
Preconditions Connection to a data store that supports SQL.
Post conditions Execution of the query along with results
Actors / Users Data curator and astronomer user
Dependencies from other
functionalities/steps

None

Exceptions No results found.
SQL query syntax error.
Connecting to the data store was not possible.

Notes/Comments None

Name REST like interface for the programmatically retrieval of data
Identifier UC2.13

 D2.1 Requirements and use case specification

Page 35 of 89

Description Astronomers often interact with data systems through
programmatic interfaces. Ideally a Python module allows the
researcher to submit a particular query and to retrieve the result.

Goal Programmatic interface.
Scope Astronomer profile.
Preconditions Connection to the data store.
Post conditions Execution of the query along with results.
Actors / Users Astronomer.
Dependencies from other
functionalities/steps

None

Exceptions No results found.
Query syntax error.
Connecting to the data store was not possible.

Notes/Comments None

3.3.5 Requirements summary

The requirements that have been elicited from this specific use case are fully listed in the

consolidated table (Table 5-1) under Group 2 (R1.2.1 - R1.2.5).

3.4 Cancer Biomarker Research

3.4.1 Overall description

The main purpose of the INODE project in the context of the cancer biomarker research use

case is to facilitate and precisely answer queries over multiple cancer-related datasets. These

queries are written in natural language. Moreover, the difficulty of answering such queries

and “understanding” user intent is tackled by an information discovery functionality that

interactively guides the user over the available data and metadata (e.g., ontologies).

Screenshots of the INODE usage for medicine are given in Figure 3-7 and Figure 3-8. For Cancer

Biomarker Research, users are scientists, including biologists, bioinformaticians, data

scientists, medical doctors, etc. It is important that scientists, without prior training, be able

to perform powerful queries across several data sets in ways that cannot necessarily be

anticipated. These requirements go far and beyond the query functionality of existing query

interfaces. INODE will accelerate extraction of useful knowledge from these data by enabling
sophisticated semantic queries across large data sets.

Furthermore, there is no conventional representation for some of the data integrated in

OncoMX (e.g., biomarker information, provenance information). These representations vary

between sources, and are likely to evolve, which makes the user task of knowledge extraction

from OncoMX more challenging. For instance, several efforts aim at identifying relevant

cancer biomarkers. While OncoMX integrates data from the Early Detection Research

Network (EDRN), it is necessary to link this information to the list of FDA approved

 D2.1 Requirements and use case specification

Page 36 of 89

biomarkers 3 , or to the biomarker qualification opinions from the European Medicines

Agency4. INODE will allow scientists to combine the information present in OncoMX with
data provided by different sources in an easier and more automated way by proposing

mappings to scientists. There is currently no resource linking all the data available, a difficulty

strongly impacting all cancer research, on which the EU spends about 3 billion Euros per year

[1]. We expect INODE to improve cancer biomarker research and to speed up the translation
from research to medical application.

The following figures demonstrate the most important features of INODE. Figure 3-7 shows a

natural language query with user assistance. INODE parses the query, provides hints for

autocompletion and disambiguates terms. Figure 3-8 visually clusters cancer types retrieved

by the natural language query. The user can explicitly choose the distance metric for the

cancer types. These examples demonstrate a powerful interplay between user-assisted

natural language queries and visual exploration.

Figure 3-7 Natural language query interface with user assistance. Step 1: user enters query in natural
language. Step 2: INODE parses query and matches keywords against the available ontology. Step 3:
INODE provides user assistance by disambiguating terms and suggesting alternatives. Step 4: results

are shown.

3https://www.fda.gov/Drugs/DevelopmentApprovalProcess/DrugDevelopmentToolsQualificationProg
ram/BiomarkerQualification- Program/ ucm535383.htm
4 https://www.ema.europa.eu/en/human-regulatory/research-development/scientific-advice-
protocol-assistance/qualification-novel- methodologies-medicine-development#section2

 D2.1 Requirements and use case specification

Page 37 of 89

Figure 3-8 Visualization of cancer types identified with the natural language query in Figure 8. The
left-hand side shows various cancer types that are similar to lung cancer. The distance between the
diseases can be chosen by the user, e.g., by distance in disease ontology. The right-hand side shows

biomarkers related to lung cancer. Here, the cancer type and the distance can be chosen by the user.

A typical analytics workflow looks as follows: The analyst is a domain expert (biologist) who
wants to identify which markers characterize which cancer type (among c1, c2, c3) for some
demographic groups. The interface given to that analyst is the OpenDataDialog. The analyst

starts with a group of middle-age male patients in Zurich who have different types of cancer

(c1, c2, c3). To expand that set, the analyst calls by-example to find k similar sets of patients

where the similarity is by cancer type. For each group, the analyst calls by-facet to breakdown

the group into three groups, one for each cancer type. The analyst then calls by-analytics to

find a set of k groups for each group whose markers have the same distribution as that group.

For each obtained group, the analyst wants to know those with the same demographics. That

is obtained by invoking by-attribute-similarity on each group to obtain subgroups with the

same demographics and cancer type. The analyst can iterate over those groups in the same

way as the starting group. The observations resulting from this iteration associate markers to

cancer types and demographics.

3.4.2 Stakeholders definition and mode of interaction

Who are the users/stakeholders?

Researchers and biologists

This profile is mainly composed of scientists that are interested in cancer biomarkers and

related data with, but not limited to, the following roles: research investigator, rare disease

researcher, research associate, biomedical researcher, biomarker researcher, regulatory

 D2.1 Requirements and use case specification

Page 38 of 89

scientist, PhD candidate and post-doc in life sciences, biocurator, cancer glycobiologist, cancer

program officer, and master or undergraduate student in life-sciences.

In this profile, we do not expect the researcher to know a structured query language such as

SPARQL or be familiar with any computer engineering concepts (e.g., a programming

language). When querying in natural language (NL), researchers expect results in a tabular and

exportable format such as comma-separated values or spreadsheet file. Moreover,

infographics (i.e., a visual representation of information or data) to summarize and highlight

information from the tabular results are highly appreciated. The main goal of researchers is

to query for relevant information and data that can substantially support their research. So

far researchers have to manually navigate and understand the OncoMX data from multiple

sources and eventually combine them, with a restricted functionality in terms of searching,

for example, per gene name such as TP53. They are thus perfect targets for the NL and

exploration services of INODE.

Moreover, we should not expect that this user profile will be aware of the exact information

available in the database or the question/query (s)he wants to address. Because of this, these

users first want to explore the data and then compose the final query to retrieve the results

they are looking for. To exemplify a real natural language query that a researcher would ask,

we can consider the following question: “obtain a list of the cancer types that my gene is

differentially expressed in with a p value cut off of < 0.01”. In the OncoMX project, the

identification of differentially expressed genes has been previously computed and explicitly

stored. With the results of this query, the researcher can explore significant changes between

healthy and disease tissues in the expression of a given gene of interest to identify candidate

cancer types for experimental investigation.

Bioinformaticians

This profile is mainly composed of bioinformaticians that have interest in cancer biomarkers

and related data with, but not limited to, the following roles: data scientist, ontologist,

bioinformatics teacher, clinical bioinformatician, computer scientist, knowledgebase

developer, post-doc in bioinformatics, and student.

We can expect these users to have a minimal computer engineering background and to be

familiar with some programming languages. This background facilitates and enables them to

understand a query language or elaborate NL queries that better fit the system. They can also

take advantage of advanced unstructured query functionalities (e.g., search for an exact

match, apply logical operators, etc.). In contrast with the non-technical users such as the

researcher profile, who expect the question-answer engine to perform the entire process for

them, bioinformaticians prefer to get the relevant raw data from the system and do the

analysis themselves with their own tools. In this sense, they are more interested in having

command line interfaces (CLIs) such as the Shell or Application Programming Interfaces (APIs)

for programming languages such as Python and R. These interfaces provide predefined

queries they can just parameterize to get the relevant data for their work and bioinformatics

pipelines (a.k.a. workflows).

Data manager

The data manager is responsible for managing the data sources by integrating new ones and

updating the existing ones. The data manager is also responsible for transforming the semi-

structured data provided by OncoMX into highly-structured data by creating and applying a

relational data model. The data manager also defines data transformations and mappings to

 D2.1 Requirements and use case specification

Page 39 of 89

semantically enrich the original data models either physically or virtually (e.g., in the context

of the virtual knowledge graph approach). The goal of enriching the data model is to enable

and improve the question-answer system.

System administrator

The system administrator is mainly responsible for creating and managing the system profiles.

(S)he can create a user with multiple profiles. For example, a user could have both the system

admin and data manager profiles.

How is every stakeholder/user interacting with application/service?

Table 3-5 Cancer Biomarker Research Stakeholders table.

Stakeholder/User Role Interacting functionalities

Researcher and
biologist

Free text querying
and information
discovery.

Access rights: only
read.

Question & Answer (QA):
Advanced QA

1. Write a query in natural language.
2. Get a tabular result example together with

other recommended candidate queries and
related NL explanations.

3. Choose a candidate query.
4. Refine the query by offering the possibility of

adding new columns/attributes.
5. Execute the final query and results are

available in a tabular-like style and it can
include infographics that summarises or
represents the retrieved results. The results
can also be exported into a spreadsheet
format or a simple CSV/TSV file. Note that a
spreadsheet format can also include
infographics.

Simple QA
It solely contains steps 1 and 5 from advanced QA.

Information discovery:

1. Writing a NL data exploration query to get a
sub-graph that represents the underlying data
at the conceptual level (“data schema”). In this
subgraph basic information along with
examples are shown to the user to improve
understandability of the “data schema”.
Initially solely nodes and edges associated with
the NL query are highlighted. Basic
information is, for example, all possible
attributes related to a given node.

2. Selecting non-highlighted node attributes, and
sub-graph nodes enables to expand the
original NL query.

 D2.1 Requirements and use case specification

Page 40 of 89

3. If the user executes the expanded query a new
sub-graph is generated to continue data
exploration.

4. The user is also able to disable nodes and
attributes. By doing so (s)he also changes the
original NL exploration query.

5. Finally, once the user built the query (s)he was
looking for by data exploration, this query is
executed. The results are available in a
spreadsheet format or a simple CSV/TSV file.
Note that a spreadsheet format can also
include infographics.

Bioinformatician Downloads relevant
portions of raw data
from the system.

Access rights:
mostly read. Create,
read, update, and
delete operations
are solely available
to manage the
query catalog.

It includes all functionalities of the “Researcher and
biologist” profile, and in addition also the following
ones:
Querying:

1. Selects a NL query along with the SPARQL
query from a template catalogue. Queries can
also be written by using a simplified structured
query language, for example, similar to a
command line interface (CLI). In addition, an
SPARQL editor with auto-complete is available
on this user profile as well.

2. Download the result in a CSV-like and/or JSON
format.

Regarding exploration:
SPARQL query bootstrap
This user profile can take advantage of the data
exploration query generator (described in the previous
row) to produce a draft SPARQL query that can be
further improved for his/her needs. In doing so, the
user can write complex queries that are not
automatically generated by the system.

Data manager Integrates data
sources, creates and
manages relational
data models and
edits VKG mappings.

Access rights:
create, read,
update, and delete.

Data integration
The OncoMX data are originally available as CSV files in
a semi-structured format. The data manager can use
external tools for performing his/her tasks, however
the INODE system can provide bootstraps to facilitate
his/her tasks of data modeling from tabular-like files
into OWL/RDF terminological and assertion data.

● After an update of a dataset by the OncoMX
team that is already present in the INODE
system, new attributes may be available. To
update the INODE system, the data manager
has to either manually edit the VKG mapping
file or the system could automatically
generate a draft of the new mappings to be
afterwards validated and edited by the data

 D2.1 Requirements and use case specification

Page 41 of 89

manager. To facilitate the data manager job,
the system may highlight the mappings that
require a modification because of changes in
the table columns (a.k.a. attributes).

● If a new data source is added, the data
manager has to:

1. Create a relational model or extend the
existing one

2. Use the mapping bootstrap functionality to
create a draft of the ontology and VKG
mappings.

3. Enrich and refine the ontology concepts and
properties.

4. Refine and create new mappings to populate
the ontology.

Access rights: create, read, update, and delete. Create,
update and delete operations are not allowed for
managing user profiles. These operations are actually
part of the system admin role.

System
administrator

Manages the overall
system.

Access rights:
create, read,
update, and delete.

Either (s)he makes changes to the system
configuration from within the system itself (e.g., via an
online interface), or just edits configuration files
directly on the server.

Access rights: create, read, update, and delete. CRUD is
solely applied for system profiles. A user exclusively
with the system admin profile cannot delete integrated
data by a data manager, for example.

Who are going to be the first user groups to use and test the system?

Once a minimal product (alpha version of the system) is available, Bgee team members will

be the first users of the system and will assess the technical and usability aspects. We will also

ask the OncoMX team if they can test the system.

3.4.3 Data provided and query examples

Data provided

We have been working closely with the OncoMX team from the US by reporting several issues

in the original cancer-related datasets. Critical issues have been addressed by the OncoMX

team, which allowed us to define the first release of a relational data model. Originally these

datasets are comma-separated files that are actually semi-structured data.

 D2.1 Requirements and use case specification

Page 42 of 89

The OncoMX raw datasets considered so far and the related MySQL and PostgreSQL database

dumps built by us are available to download in the folder at ftp://ftpbgee.unil.ch/inode/.

Queries (NL + SQL)

Queries Q1 to Q5 focus on the healthy expression dataset of which we (Bgee team) are the

owners. The Q6 query is addressed over the differential gene expression dataset. Q1 to Q6

queries have different levels of complexity as described in the “Query characteristics” column

in the table below.

Table 3-6 Cancer Biomarker Research Queries.

 Natural language text SQL query of
reference

Query
characteristics

#Results Results (example)

Q1 List the names and
Ensemble identifiers of
healthy expressed human
genes

see UC1-Q1 in Annex

2 projections
on 2-way join
tables

32398 #
ensembl_gene_id,
gene_symbol
'ENSG0000000000
3', 'TSPAN6'
'ENSG0000000000
5', 'TNMD'
'ENSG0000000041
9', 'DPM1'
'ENSG0000000045
7', 'SCYL3'

Q2 Human anatomic entities
at young adult
developmental stages

 see UC1-Q2 in Annex 2 projections
on 3-way join
tables with
where-clause
on stage name
+ LIKE operator

4 # name, id
'testis',
'UBERON:0000473
'
'temporal lobe',
'UBERON:0001871
'
'liver',
'UBERON:0002107
'
'corpus callosum',
'UBERON:0002336
'

Q3 Healthy anatomical
entities where the apoc1
gene is expressed

see UC1-Q3 in Annex

2 projections
on 3-way join
tables with
where-clause
on
gene_symbol

74 # id, name
'UBERON:0000007
', 'pituitary gland'
'UBERON:0000082
', 'adult
mammalian
kidney'
'UBERON:0000451
', 'prefrontal
cortex'
'UBERON:0000458
', 'endocervix'
'UBERON:0000473

 D2.1 Requirements and use case specification

Page 43 of 89

', 'testis'

Q4 “healthy human
anatomical entities
where the apoc1 gene is
highly expressed”.

The same question more
precisely could be:
 “top 10 healthy human
tissues with the highest
expression of the APOC1
gene”

see UC1-Q4 in Annex

1 projection on
5-way join
tables with
where-clause
on
gene_symbol
and species
name including
group by and
order by
statements
with the MAX
aggregation
function

10 # name
'liver'
'right lobe of liver'
'left adrenal gland
cortex'
'right adrenal
gland'
'right adrenal
gland cortex'

Q5 Visualize the expression
of a gene across multiple
developmental stages.

Why to answer this
question: to explore
changes in expression of
a gene of interest over
the course of an
organism's life cycle

see UC1-Q5 in Annex 4 projections
on 5-way join
tables with
where-clause
on
gene_symbol .

Remark: Gene
names may
imply some
ambiguity. To
solve this
ambiguity one
way is to
project the
species name.
Moreover,
although it is
not explicitly
mentioned in
the query text,
we should only
consider
healthy
tissues.

302 # Tissue, Stage,
Score

'corpus callosum',
'adolescent stage
(human)',
'15500.00'

'pituitary gland',
'human adult
stage (human)',
'11900.00'

'adult mammalian
kidney', 'human
adult stage
(human)',
'9090.00'

'endocervix',
'human adult
stage (human)',
'6800.00'

'brain', 'human
adult stage
(human)',
'10400.00'

 D2.1 Requirements and use case specification

Page 44 of 89

Q6 Obtain a list of the cancer
types that my gene is
differentially expressed in
with a p value cut off of <
0.01

see UC1-Q6 in Annex

1 projection on
3-way join
tables with
where-clause
on
gene_symbol
and pvalue

7 # name

'breast cancer'

'colorectal cancer'

'kidney cancer'

'lung cancer'

'stomach cancer'

'thyroid cancer'

'uterine cancer'

3.4.4 Use case detailed description

In this subsection, we focus on describing the functional requirements in further detail for the

Bioinformatician and Research/Biologist profiles. This is due to the fact that these profiles are

the most relevant for the cancer biomarker research case study. Figure 3-9 shows a general

use case diagram that involves the UC3.1, UC3.2, UC3.3, UC3.4, and UC3.5 use cases below.

Figure 3-9 The UML use case diagram for of the Cancer Biomarker Research use case illustrates an
overview of the query in natural language and related requirements for the Research/biologist and

bioinformatician profiles.

 D2.1 Requirements and use case specification

Page 45 of 89

Table 3-7 Detailed view of the Cancer Biomarker Research use case.

Name Querying in natural language
Identifier UC3.1
Description The user writes a query in natural language to be executed over the

cancer-related datasets. As a result, ranked candidates queries
generated based on the user input are available along with some
NL explanations. In doing so, the system provides other query
options “interpreted” by the system. By default, the results of the
best ranked candidate query are retrieved in a tabular format.

Goal To retrieve results of a given query.
Scope Bioinformatician, and researcher and biologist profiles.
Preconditions The user has to write and submit a query in English.
Post conditions The information requested is displayed.
Actors / Users Bioinformatician, researcher and biologist
Dependencies from other
functionalities/steps

N/A

Exceptions No results are found.
The query is too general.
It was not possible to generate any candidate query or none of
them are significant.

Notes/Comments

Candidate queries are considered significant if they do satisfy any
aspect of the user intent.

Name Selecting query result attributes (the query projection)
Identifier UC3.2
Description This use case is to define which attributes are expected by the user

to answer her/his question. After selecting a candidate query, the
user can be interested in refining the query by adding and/or
removing attributes. For example, let us consider the following
question: “which species are present?”. The answer for this
question can include one or more of the following species’
attributes: a taxonomic identifier, a description, common and
scientific names. Attributes can also be ranked to facilitate the
choice mainly when several of them are available.

Goal To allow the user to choose which attributes compose the answer
for his/her question.

Scope Bioinformatician, researcher and biologist profiles
Preconditions The user has to select which attributes will be projected
Post conditions The information requested is displayed
Actors / Users Bioinformatician, researcher and biologist
Dependencies from other
functionalities/steps

UC3.1

Exceptions At least one attribute must be added.
The attribute cannot be added for the question answer.

Notes/Comments None

Name Downloading results
Identifier UC3.3

 D2.1 Requirements and use case specification

Page 46 of 89

Description It provides the possibility to download the results as a CSV file, JSON
file or a spreadsheet (e.g. .xlsx) by also including infographics when
it is applicable.

Goal To allow the user to download the results.
Scope Bioinformatician, researcher and biologist profiles
Preconditions The user has to choose the format to export the results.
Post conditions The file is downloaded
Actors / Users Bioinformatician, researcher and biologist
Dependencies from other
functionalities/steps

UC3.1, UC3.2, UC3.10, UC3.11 and UC3.6

Exceptions No retrieved results to export.
Notes/Comments None

Name Displaying results
Identifier UC3.4
Description The results are mainly shown in a tabular format. New columns can

be added according to UC3.2. When applicable, it can also display
possible infographics related to the results.

Goal To allow the user to visualize and read the results, i.e question
answer.

Scope Bioinformatician, researcher and biologist profiles.
Preconditions The user has to submit a query before (see UC3.1).
Post conditions The information requested is displayed.
Actors / Users Bioinformatician, researcher and biologist.
Dependencies from other
functionalities/steps

UC3.1, UC3.2, UC3.10, UC3.11 and UC3.6

Exceptions No results to display.
Notes/Comments None

Name Visualizing large controlled vocabularies and ontologies.
Identifier UC3.5
Description In biology, controlled vocabularies and ontologies have been

adopted to reduce semantic heterogeneities. Usually, these
ontologies are not applied as a data schema to structure data. For
example, we can mention the UBERON ontology for anatomical
entities in animals. Because of the size and complexity (e.g. part of,
is a, property chain axioms) of these ontologies, they are not easy
to be visualized and understood by the user. This means the user
cannot easily retrieve the essential information (s)he is looking for.
For example, how to visualize and improve understandability that
“red nucleus” anatomical structure is part of “the midbrain
tegmentum” that is part of the “midbrain”. And finally to know that
the midbrain is a “regional part of the brain”. The ontology terms
will often be part of the query results. Hence it is important to the
user to better understand the semantics of the retrieved
ontological terms rather than solely showing term labels.

Goal To show a visual summarization of ontological term meanings.
Scope Bioinformatician, researcher and biologist.
Preconditions ontology/taxonomy/controlled vocabulary
Post conditions Visual summarization of one or more term semantics
Actors / Users Bioinformatician, researcher and biologist.

 D2.1 Requirements and use case specification

Page 47 of 89

Dependencies from other
functionalities/steps

UC3.4

Exceptions The file could not be loaded.
Term does not exist.

Notes/Comments None

Name Building a query by exploring the datasets
Identifier UC3.6
Description The user writes a query in natural language as a result (s)he obtains

a subgraph that represents in abstracted way how the data used to
answer a question are structured and related (i.e. an explicit view
of the data schema). Value examples are also displayed when
highlighting or selecting a given attribute of a graph node (that can
be interpreted as a class). Displaying attribute values are important
for the user because (s)he can find out what kind of projected
results to expect when executing the final built query. In this
subgraph, not only an explicit portion of the data schema to answer
the initial question is shown but also the closest neighbor nodes
and their attributes. This is done to allow the user to explore the
datasets and expand the initial query. Moreover, when expanding
the initial query, the user has the possibility to specify attribute
values, consequently, (s)he restricts the retrieved results similar to
a WHERE clause in SQL.

Goal To allow the user to interactively build a query based on an initial
exploratory question.

Scope Bioinformatician, researcher and biologist profiles.
Preconditions The user has to write in English and submit a query.
Post conditions A subgraph that represents how the data are structured to answer

an exploratory query and their final results.
Actors / Users Bioinformatician, researcher and biologist
Dependencies from other
functionalities/steps

None

Exceptions No data found to answer the query.
Notes/Comments None

Name Exporting built query.
Identifier UC3.7
Description It provides the functionality to save the built query into a SPARQL

query file (.rq files).
Goal To export the built query in a .rq file.
Scope Bioinformatician, researcher and biologist profiles
Preconditions Built a query based on UC3.6 or UC3.9.
Post conditions A SPARQL query file (.rq file).
Actors / Users Bioinformatician, researcher and biologist.
Dependencies from other
functionalities/steps

UC3.6, and UC3.9

Exceptions No data found to answer the query
Notes/Comments None

 D2.1 Requirements and use case specification

Page 48 of 89

Name Importing query from .rq file.
Identifier UC3.8
Description It provides the functionality to import a query from a .rq file. The

query can be then executed by the user. Edition is enabled within
a SPARQL query editor for the bioinformatician user profile.

Goal To import a query from an .rq file into the INODE system.
Scope Bioinformatician, researcher and biologist profiles.
Preconditions SPARQL query stored as a .rq file.
Post conditions Possibility to execute or edit the loaded query.
Actors / Users Bioinformatician, researcher and biologist
Dependencies from other
functionalities/steps

UC3.3, UC3.4, UC3.9, and UC3.7

Exceptions Syntax file is not compliant with the rq format.
No data found to answer the query.

Notes/Comments None

Name SPARQL query editor.
Identifier UC3.9
Description It provides a SPARQL editor with an auto-complete feature.
Goal SPARQL query edition.
Scope Bioinformatician profile.
Preconditions Connection to a data store that supports SPARQL.
Post conditions Execution of the query along with results
Actors / Users Bioinformatician
Dependencies from other
functionalities/steps

None

Exceptions No results found.
SPARQL query syntax error.
Connecting to the data store was not possible.

Notes/Comments None

Name Query template catalog and API interfaces.
Identifier UC3.10
Description Queries are stored along with a description. A query can be set up

as an editable form where data values can be modified. For more
advanced users, they can directly edit the templates based on
SPARQL or simplified query languages. CRUD operations over the
query catalog are also available. The queries can also be executed
and parameterized through predefined interfaces such as RESTFul
APIs and/or APIs in Python and R languages.

Goal Managing a query template catalog.
Scope Bioinformatician profile.
Preconditions Connection to the data store.
Post conditions Save query and editable template and/or run the query.
Actors / Users Bioinformatician
Dependencies from other
functionalities/steps

UC3.9

Exceptions Query syntax error.
Notes/Comments None

 D2.1 Requirements and use case specification

Page 49 of 89

Name Simplified query language.
Identifier UC3.11
Description Bioinformaticians are used to command line interfaces (CLI).

Providing a simplified query language based on CLI commands can
make it more user-friendly for them. An example of an existing
SPARQL-CLI interface is http://spang.dbcls.jp .

Goal CLI-based query language
Scope Bioinformatician profile.
Preconditions Connection to the data store.
Post conditions Execution of the query along with results
Actors / Users Bioinformatician
Dependencies from other
functionalities/steps

None

Exceptions No results found.
Query syntax error.
Connecting to the data store was not possible

Notes/Comments None

3.4.5 Requirements summary

The requirements elicited by this specific use case are provided in the consolidated table

(Table 5-1) under Category R1, Group 2 (specifically the requirements R1.2.2, R1.2.3, R1.2.5-

R1.2.8, R1.2.10, R1.2.11, R1.2.13, R1.2.14, R1.2.17 - R1.2.26).

 D2.1 Requirements and use case specification

Page 50 of 89

4 TECHNICAL AND SYSTEM LEVEL REQUIREMENTS

4.1 Integrated Query processing (WP3)

4.1.1 Technology Elements involved

All Tasks

UNIBZ plans to contribute to the development of all the query processing tasks through its

own technology Ontop [2], a popular Virtual Knowledge Graph (VKG) system implemented in

Java. A VKG is a virtual representation in the form of a graph of the information coming from

multiple, possibly heterogeneous, data sources. Such representation relies on the RDF

language as the format to represent the data as a graph, and on OWL 2 QL as the language to

represent ontologies. Both are W3C standards for VKGs. The RDF graph is virtual in the sense

that it is not a copy of the data sources that are physically stored somewhere, but rather each

query (formulated in SPARQL, the W3C standard query language for RDF) over the VKG is

translated by Ontop into a query over the original data sources [3]. This is done through

reformulation techniques well studied in the literature [4] as well as a number of

optimizations performed by Ontop itself [5], so as to reduce the overhead introduced by

virtualization and translation to a minimum. The link between the VKG and the data sources

is realized through a domain-specific ontology, which provides a vocabulary for SPARQL

queries abstracting from storage details, and through a set of mappings relating elements in

the ontology to queries over the data sources.

Ontop is not a prototype tool, but a large and well-established software artifact that relies on

and interacts with several technologies 5 . Most notably, it supports all major open and

commercial RDBMSs (e.g., PostgreSQL, Oracle, DB2, Microsoft SQL Server, etc.). Ontop can be

used in several different ways: as a SPARQL endpoint to query through HTTP, as an API to

enrich other Java applications, or simply as a shell tool.

Task 3.1 - Query execution over rich types of data sources

In this task the goal is dual. On the one hand, we want to provide support for querying data

sources that go beyond RDBMSs, for instance NoSQL sources such as MongoDB. With respect

to this, we are also considering the possibility of having RDF itself as a data source format,

e.g., in the form of Triple Stores (see Task 3.2). On the other hand, we want to support complex

datatypes, such as the GIS geospatial types, which are nowadays broadly supported by all

major RDBMSs and also by GeoSPARQL (a flavor of SPARQL for GIS). With respect to the latter

goal, we began working on supporting *all* SQL and SPARQL datatypes. This is non-trivial, as

it requires defining suitable conversion tables between datatypes, which come into play

during the query reformulation phase.

5 https://ontop-vkg.org/

 D2.1 Requirements and use case specification

Page 51 of 89

Task 3.2 - Source Federation

In this task, the goal is to render Ontop able to perform query processing tasks over multiple

federated data sources, as opposed to a single relational data source. For the federation layer,

we plan to use techniques that build upon existing federation middleware, in particular

Denodo, Dremio, Teiid, and Spark.

Task 3.3 - Data Analytics

For this task, Ontop needs to be able to express complex analytics (e.g., statistics, clustering,

or graph analysis) in terms of the ontological vocabulary, with special attention to the various

data dimensions, and techniques and to include them in query reformulation. To achieve this,

we are enriching Ontop with SPARQL aggregate functions (e.g., COUNT, MIN, MAX, etc.).

Doing so requires a substantial rethinking of the whole reformulation process. For instance,

one of the optimizations performed by Ontop is to always push the UNION operators to the

root of the reformulated queries. In the presence of aggregates, this optimization cannot be

applied blindly since this would affect the soundness of query results. Note that the challenge

in this specific example is how to reconcile performance of query answering with support to

aggregate functions.

Task 3.4 - Answer Justification

We want the users to be able to reconstruct why a certain answer was returned by Ontop.

Such justification is not only in terms of where the data comes from (data provenance), but

also in terms of which ontology axioms and mapping assertions were involved during the

query reformulation phase (respectively, ontology provenance and mapping provenance). To

support this task, we plan to rely on existing techniques based on provenance, and in

particular we will rely on ProvSQL, which is at the moment the only working provenance tool

developed in the context of RDBMSs. ProvSQL only currently supports PostgreSQL, and no

other tool exists for other types of data sources that would be robust enough. We plan to deal

with this by providing an answer justification based on mappings and ontology provenance,

and only a basic form of data provenance.

4.1.2 Relation to INODE

Query processing is a core component of the INODE architecture, since it is a key service used

by almost all other components. In particular, the Data Abstraction Layer in the INODE

architecture is essentially provided by Ontop. Note that the tasks and technologies discussed

in the previous section directly refer to services and artifacts both lying below (e.g., ontology,

data sources) and above (e.g., query execution, answer justification) this Data Abstraction

Layer, namely in the Data Access Layer and Business Logic Layer, respectively.

4.1.3 Requirements implied by the technology elements

The requirements that are introduced by these specific technology elements are presented in

the consolidated table (Table 5-1) under Group 3 (as requirements coded R1.3.1 to R1.3.4).

 D2.1 Requirements and use case specification

Page 52 of 89

4.2 Data Linking and Modelling (WP4)

4.2.1 Technology elements involved

Task 4.1 - Data-driven Mapping

UNIBZ plans to adopt Ontop, a technology discussed in Section 4.1.1, to bootstrap an initial

ontology and a set of VKG mappings starting from a database. The generation of the ontology

and mappings will be flexible, and will also allow one to only generate the mappings in the

case where an ontology is already available to the user. Such mappings will provide the

semantic link between the database information and the elements in the ontology. At the

moment, the bootstrapping component of Ontop is not flexible, because it only generates the

ontology and mappings in combination and does not allow for the reuse of an existing

ontology. In order to provide more flexibility, we plan to rely on techniques coming from

Schema Matching, a research field where the goal is to find correspondences across different

relational database schemas. Such techniques need to be extended to the richer setting of

mappings between an ontology and data sources, where in addition to having mapping

queries that are typically more complex than the direct correspondences in Schema Matching,

one needs to deal with the generation of suitable object identifiers at the ontology level from

values extracted from the data sources.

Task 4.2 - Task-driven Mapping

UNIBZ plans to extend Ontop so that it can deal with requests (i.e., queries) that require (i)
concepts not present in the ontology but available in the data sources, or (ii) concepts present

in the ontology but not yet mapped to the data sources. Observe that to address both

scenarios we rely on the functionalities provided by data-driven mappings.

Task 4.3 - Knowledge graph construction based on text

Infili Technologies and ZHAW are planning to contribute to the development of automated

entity extraction and graph construction technologies, by collaboratively developing the

components of a unified pipeline. The entity extraction components will be developed in a

complementary manner, with the outputs of each partner’s system being combined in the

pipeline. The entity-relation-entity triples output from each system will be consolidated

before a unified knowledge graph is constructed. ZHAW plans to build these components by

developing deterministic NLP algorithms; Infili aims to do this through its product portfolio of

statistical NLP techniques, and more specifically by fine-tuning its family of NLP analytics

products (e.g., Noima). This leverages the advantages of both approaches: the higher-recall

output of the Infili system can be refined using the higher-precision NLP algorithms developed

by ZHAW.

The Infili suite leverages web crawling techniques to collect and process thousands of data

sources, including unstructured text (web sites, blogs, forums, etc). It then uses information

extraction techniques to isolate the valuable information from these sources, and to collect

named entities and their in-between direct and latent semantic relationships. The platform is

primarily used for landscaping entities (enterprises, individuals/products) ecosystems, by

applying graph databases for entity linking and statistical NLP techniques for syntactic parsing

and Part-of-Speech tagging, entity extraction, sentiment analysis etc. The objective at Infili is

 D2.1 Requirements and use case specification

Page 53 of 89

to enrich the suite’s toolkit throughout the project, by integrating state-of-the-art deep-

learning models for language modelling, text comprehension, and summarization.

ZHAW will be using Python’s Natural Language ToolKit (NLTK), which contains both Stanford

Parser and WordNet interfaces, along with built-in data structures for linguistic analysis (such

as dependency graphs and phrase-structure parse trees). The Stanford Parser component is a

wrapper for a Java-based parser, which will be run as a server, in parallel to the entity

extraction system. New unstructured text documents will be sent to a locally-running server

for pre-processing before the entity extraction procedure. The main body of the system will

use customised graph and tree algorithms written using common Python libraries, such as

NumPy.

The graph construction will be based on the open-source version of the Neo4j graph database

management system, an ACID-compliant transactional database with native graph storage

and processing, which is optimal for deep or variable length traversals and path queries. Neo4j

is implemented in Java but is also accessible from software written in other languages (e.g.,

Python) using relevant libraries. It uses the Cypher language for query expression, through a

transactional HTTP endpoint, or through the binary "bolt" protocol. However, its recent

versions also allow the user to create Cypher queries in pure Python using Pypher, a suite of

lightweight Python objects.

Regarding NLP-related tasks, the platform already exploits the functionalities of the most

popular PoS and NER libraries, namely Stanford Core NLP, Spacy, and NLTK. ZHAW also makes

use of these tools in its own systems, ensuring that all components will be built on a reliable

foundation of industry-standard tools. NLTK’s WordNet interface also provides a hierarchical

dictionary/thesaurus reader, which can be traversed for the hypernymy and synonymy

information required for restructuring the knowledge graph. Driven by research interests,

Infili will also explore Pytorch implementations of state-of-the-art general-purpose

architectures (BERT, ELMO, XLNet) for Natural Language Understanding (NLU), leveraging the

libraries of pre-trained NLP models as well as development frameworks such as HuggingFace

and AllenNLP.

4.2.2 Relation to INODE

The Data-driven and Task-driven components aim to provide support to domain experts in the

task of ontology construction. In order to process queries, the Ontop system requires three

elements as input: (1) the data sources, (2) the ontology, which provides the target vocabulary

(as well as an encoding of the domain knowledge), and (3) the VKG mappings linking the data

sources to the ontology. The ontology and the mappings are usually specified manually by the

domain experts, in interaction with the data source providers, who are aware of the specific

details of how data is organized and structured at the sources. Due to this interaction, writing

the ontology and the mappings is usually a tedious and time-consuming activity. Through the

Data-driven and Task-driven approaches we provide support to the domain experts in this

task, by automating the creation of a first basic version of the ontology and mappings. The

domain experts can use these as a starting point, and adapt them according to their needs.

The challenge for INODE is to automatically generate an ontology and mappings that are

ready-to-go, thus requiring minimal to no intervention by the domain experts.

The development of the Entity Extraction and Knowledge Graph components will facilitate a

system that extracts useful information from unstructured text, and transforms it into a

format suitable for complementing an existing structured database. The knowledge graph

 D2.1 Requirements and use case specification

Page 54 of 89

component of this system will allow the retrieval and query-processing components of INODE

to leverage additional data that is complementary to existing structured data. This will be

done with the intent of building a system that runs efficiently at scale, but is robust enough

to handle a wide range of unstructured text domains, and thus all the use cases of INODE.

Further features that could be added to the knowledge graph include a synonymy component

that could assist with processing natural language queries in other parts of the system.

Although Infili’s NLP analytics platform was originally intended for Greek Web sources, its

NER-related capabilities could be easily re-purposed to allow for entity and relation extraction

from English unstructured texts without major modifications. One anticipated challenge is

NER performance (e.g., in terms of accuracy, F1-score etc.) of the existing pre-trained models

on domain-specific corpora (e.g., biomedical), where lower performance is expected. To this

end, the rules-based approach of ZHAW will be leveraged to increase the precision of the

entities and relations, leading to a higher-precision output. Such rules will likely need to be

extended, in order to cover a wide range of text domains and communication styles – however

the design of the system will take this into account, and synthesizing additional rules should

be a simple process.

There is an issue of co-reference resolution (i.e., finding all expressions that refer to the same

entity in a text), which will likely be encountered in both the R&I Policy Making and Cancer

Biomarker Research datasets. However, this can be solved by using neural models that check

all spans in the document as potential mentions and learn distributions over possible

expressions to which each span refers to.

4.2.3 Requirements implied by the technology elements

The requirements that are introduced by these specific technology elements are presented in

the consolidated table (Table 5-1) under Category 1 Group 4 (as functional requirements

coded as R1.4.1 to R1.4.8) and under Category 2 Group 2 (as non-functional requirements

coded as R2.2.8, R2.2.9, and R2.2.10).

4.3 Data Access and Exploration (WP5)

4.3.1 Technology elements involved

Task 5.1 - by example and Task 5.2 - by analytics

The design of the different by-example exploration operators such as by-filter, by-join or by-

sim that we have proposed is based on two different approaches, each of which involves a

different technology.

● All-Python: data is presented in the form of CSV files, and loaded into memory in data

frames (using Pandas).

● Embedded: This approach is based on a SQL/SPARQL backend, where the data is

stored in a relational database (we use the PostgreSQL DBMS), and combined with an

in-memory logic in Python.

The implementation of the two approaches will allow us to compare their performances.

 D2.1 Requirements and use case specification

Page 55 of 89

Task 5.3 - by natural language

The goal of this task is to translate natural language (NL) questions to SQL or SPARQL. We

will perform a “dual-strategy-approach”:

● Non-neural network-based approach: We will extend our existing research prototypes

SODA and Bio-SODA [6] (a non-machine learning approach) and adapt it to the use

cases of INODE. (“low risk approach”)

● Neural network-based approach: We will experiment with state-of-the-art machine

learning algorithms that require large amounts of training data to translate from NL

to SQL. This can be considered a “high risk approach”.

By running this dual-strategy-approach, we make sure to have a running system on INODE-

data in the short term and also have the freedom to experiment with new algorithms which

can be used in the medium to longer term of the project.

The first approach is implemented in Java to leverage enterprise-scale software development

technology. The second approach is implemented in Python to leverage state-of-the-art

machine learning packages.

4.3.2 Relation to INODE

Task 5.1 - by example and Task 5.2 - by analytics

We investigated two implementations of exploration operators: an all-Python in-memory

implementation, and an embedded-SQL implementation. A first version of the all-Python

implementation for all operators (by-filter, by-facet, by-subset, by-superset, by-overlap, by-

join, and by-sim) is running and we are in the process of finalizing the embedded-SQL

implementation.

Each operator (by-filter, by-facet, by-subset, by-superset, by-overlap, by-join, and by-sim)

takes as input an example itemset, and a set of attributes and returns one or several itemsets,

each of them is “related to” the example itemset. These operators allow users to:

● Explore in more detail and in depth the example itemset (by-facet, by-filter, by-

subset).

● Extend the schema of the example itemset (by-join).

● Expand the size of the example itemset (by-superset).

● Explore related itemsets outside of the example itemset (by-overlap).

● Explore similar itemsets outside of the example itemset (by-sim).

Task 5.3 - by natural language

To enable a hybrid approach of translating from NL to SQL/SPARQL, the two approaches

(neural network-based and non-neural network based) need to be integrated via a REST-API.
In particular, the Java-code needs to be efficiently called via Python and vice versa. Moreover,

the REST-API needs to be callable by other services described in Tasks 5.1 and 5.2 as well as

by the User Assistance Services and the Multi-Modal Discovery Services.

 D2.1 Requirements and use case specification

Page 56 of 89

4.3.3 Requirements implied by the technology elements

The requirements that are introduced by these specific technology elements are presented in

the consolidated table (Table 5-1) under Category 1 Group 5 (as functional requirements

coded as R1.5.1 to R1.5.4), Group 6 (as functional requirements coded as R1.6.1 to R1.6.8)

and under Category 2 Group 2 (as non-functional requirements coded as R2.2.6 and R2.2.7).

4.4 User Assistance services (WP6)

4.4.1 Technology elements involved

Task 6.1 - Exploration insights

ATHENA and CNRS are planning to contribute to the development of methods that provide

exploration hints, i.e., recommendations, to the user.

ATHENA’s data-based query recommendation approach starts from a user query and

generates query recommendations based on statistical properties of the dataset and the

query results. The main idea is to cluster the query results and find a set of new queries that

describe these clusters. The user can refine their exploration by submitting one of the queries

for further analysis. Result clustering takes the similarity of the results as well as the

correlation of the attributes that describe them into consideration. A decision tree is used to

produce splits of the dataset. The decision tree boundaries are used to produce the

recommended queries.

Furthermore, ATHENA’s prior work on semantic recommendations [7] uses a knowledge graph

to recommend interesting tweets for users. Based on the user activity, the approach identifies

semantically similar tweets from other users, and users with similar interest profiles as well.

The foundation of this method is a knowledge graph that represents all user topics of interest

as a variety of concepts, objects, events, persons, entities, locations and the relations between

them. The method uses the knowledge graph and graph theory algorithms in order to

construct user interest profiles by retrieving semantic information from tweets based on

which recommendations are performed. The main principles of this process can be applied in

INODE to implement a semantic approach to query recommendation.

CNRS’s prior work on guided exploration of user groups [8] uses Reinforcement Learning with

the purpose to find target users. Exploration is modelled as an iterative decision-making

process, where an agent is shown a set of user groups, chooses users from those groups, and

selects the best action to move to the next step. Reinforcement learning is applied to discover

an efficient exploration strategy from a simulated agent experience, and propose the learned

strategy to recommend an exploration policy that can be applied to the same task for any

dataset. This framework accepts a wide class of exploration actions and does not need to

gather exploration logs.

 D2.1 Requirements and use case specification

Page 57 of 89

Task 6.2 – Explanations

ATHENA’s work on natural language explanations for SQL queries comprises Logos [9], a

system that generates natural language explanations for SQL queries. To do so, it considers

that the database schema graph can be represented as a graph where nodes represent the

database relations and attributes, and edges represent the relationships between the nodes

(e.g., attribute belongs to relation, foreign key-primary key relationships connecting

relations). Edges and nodes are annotated with labels that explain nodes and their

relationships intuitively in natural language. These can include the names of the nodes (if they

are descriptive enough) and annotations of the nodes and edges produced by a database

designer or the user. An SQL query is also represented as a graph that captures the semantics

of the query, and extends the database schema graph to include value and function nodes.

Given an SQL query, Logos can synthesize different types of NL explanations using the graph,

the labels, additional templates that enrich the explainability mechanism of the system and a

template mechanism that dictates how to synthesize NL phrases.

4.4.2 Relation to INODE

Task 6.1 - Exploration insights

Exploration insights or recommendations help the users navigate data and complete their

search and exploration tasks more easily.

Especially at the early stages of a dataset’s deployment through INODE, user logs may not be

available. In general, a cold-start situation is a situation where we do not have logs that

provide information about how different users access the data, e.g., queries they perform,

results they choose, etc. and/or when there is no such information for a particular user. To be

able to provide meaningful recommendations in such situations, INODE will employ a set of

approaches that aim at a holistic solution. All methods will be tested with the three use cases.

ATHENA’s data-based query recommendation approach fits well into contexts where user logs

are not available. In INODE, this approach will be enhanced to work on big and diverse

datasets. For example, the astrophysics dataset is large and has mainly numerical attributes;

CORDIS, on the other hand, has more textual content. The data-based query recommendation

approach needs to scale to large query result sets described by several attributes.

CNRS is developing an adaptation of Reinforcement Learning (RL), an unsupervised method

that does not necessitate the use of logs. This adaptation is based on simulating a human

agent that interacts with the environment to learn an exploration policy. The method uses a

Markov Decision Process to model states and actions. The actions are the exploration

operations we have defined. An action is applied to a state and the RL method learns state

feature weights during the simulation.

Infili and ATHENA will extend the knowledge-based approach to generate recommendations

by exploiting the relationships and entities of knowledge graphs, starting with CORDIS. The

major strength of this family of methods is that there are no cold-start problems (i.e., when a

user appears on the platform for the first time or needs to make a new search). On the

contrary, these case-based approaches rely on specific domain knowledge regarding how

certain features meet users’ needs and are usually leveraged for query expansion tasks, which

 D2.1 Requirements and use case specification

Page 58 of 89

exploit the knowledge source to expand the original query with additional terms that are

specifically relevant to the query's scope.

CNRS and ATHENA are also developing an approach based on soliciting user feedback on data

and training a classifier to learn the parameters of the next exploration action. A user’s

exploration actions form a pipeline or sequence. The goal is to find the parameters that

maximize the coverage of unlabeled data. Additionally, this method will be extended to solicit

feedback on exploration operations and queries.

As INODE starts collecting user queries in logs, we will extend our methods to leverage

information from the logs and generate recommendations, not only at the level of individual

actions or queries, but also at the level of sets or sequences of actions, i.e., pipelines. For

example, given the user’s current set of queries, the system may give pipeline

recommendations and pipeline completions based on user and query similarities.

These methods will also look into building different user roles (such as novice, expert, data

scientist). For example, we expect the novice user to need a simple pipeline, while the domain

expert needs a pipeline that focuses on attribute correlations, and the data scientist needs a

pipeline that explores relationships between tables (joins etc).

To this end, collaborative filtering approaches could be leveraged for query suggestion, aiming

at the exploitation of previous users’ experience, in order to drive other users with similar

information needs in the right direction. More specifically, the formulation of this problem

implies that users with similar profiles (e.g., similar past searches, expertise) can benefit from

“successful” queries that allowed other users to find the information they were looking for.

Two main types of collaborative filtering algorithms can be used for log-based query

suggestion: (i) memory-based, which use the whole data to suggest queries based on similarity

measures and (ii) model-based, which construct a model in advance to depict the different

needs of each user profile. The former are usually simple to deploy but have limited scalability

and the latter are usually more efficient in terms of prediction speed, but can be difficult to

train and fine-tune as the application domain data evolves.

Task 6.2 – Explanations

Generating natural language (NL) explanations of queries for the users is an important part in

INODE that aims at bridging the gap between the user queries, on the one hand, and how the

system interprets these user queries on the underlying data, on the other hand. ATHENA has

adapted Logos to generate NL explanations over the CORDIS data with satisfying results. We

are creating a large set of initial queries to test the system. One challenge with generating NL

explanations arises when dealing with databases that have obscure or very complex schemas.

The astrophysics data are a good example. For these, we are planning on extending our

approach on learning templates from existing NL queries. Generating NL explanations for

parts of a query (that are the more ambiguous) is also important. As we work on extending to

other datasets and queries, we will also extend to handling SPARQL queries formulated over

an ontology. These resemble, in philosophy, SQL queries over a database schema, so we

expect to map them to query graphs and have Logos work on them.

 D2.1 Requirements and use case specification

Page 59 of 89

4.4.3 Requirements implied by the technology elements

The requirements that are introduced by these specific technology elements are presented in

the consolidated table (Table 5-1) under Category 1 Group 6 (as functional requirements

coded as R1.6.1 to R1.6.19), and under Category 2 Group 2 (as non-functional requirements

coded as R2.2.11 and R2.2.12).

4.5 Multi-modal discovery services (WP7)

4.5.1 Technology elements involved

Fraunhofer IGD develops the "Visual Computing as a Service" (VCaaS) platform, which we

intend to use and extend in the development of the multi-modal discovery services. The VCaaS

platform provides a good starting point for WP7 developments in INODE, as it provides the

means to create, run and monitor complex data-driven workflows, for example in the cloud.

A workflow is a repeatable process, which, in most cases, consists of various activities carried

out in a specified order to transform input information into output results. As different multi-

modal data types have to be treated differently, the VCaaS platform provides the flexibility

we need to pursue the discovery therein. In fact, VCaaS does not only provide one single

runtime, but multiple, each featuring different advantages. The “Executor” engine is a RESTful

service capable of updating workflows while they are loaded. The benefit of this approach is

that it enables a more rapid workflow design, as time and energy are saved: Datasets load less

often, algorithms run fewer times, and larger datasets. Another workflow engine supported

by VCaaS is the “steep” engine, which is advantageous when dealing with big data (for

example, earth observation satellite imagery), as it allows recursive actions and optimizes

parallelization with multiple agents in cloud-native scenarios.

To ease user interaction with the VCaaS platform, the Whiteboard has been created. It

provides a web-based visual programming interface to create such workflows. As complex

workflows are likely to include dependencies among activities (for example, when combining

two results into a single one), and workflow designers need to know and understand these

dependencies, workflows are laid out on a 2D canvas, where these dependencies become

visually apparent. Besides the actual design of workflows, the Whiteboard does not only

provide features to execute and monitor these workflows, but also to interactively visualize

the results, to collaboratively edit and annotate workflows. Such features might prove

beneficial in the later stages of the INODE project.

4.5.2 Relation to INODE

In general, the Whiteboard and VCaaS already support exploratory processes, as explorations

are sequences of partially interdependent actions, which are carried out on data, and

therefore captured in a workflow. However, VCaaS currently lacks semantic web support, i.e.,

RDF and SPARQL support have to be added.

Furthermore, preliminary work suggests that the type of user interface currently employed (a

free 2D canvas with boxes and arrows connecting them) is too complex for the prospective

target user groups identified by the use case partners. Thus, adaptations and simplifications

 D2.1 Requirements and use case specification

Page 60 of 89

are foreseen, which tailor the current user interface for laypersons, resulting in a more query-

response style (like classic web search engines).

Task 7.1 - Visual guidance and exploration of search results

One goal of this task is to enable users to explore search results. In doing so, the user is able

to validate whether a query yields the expected results. The comparison of actual data to the

expected outcomes poses two challenges. First, results from linked big data sources like

federated triple stores may return large result sets which contain data of various modalities,

posing an inherent challenge to even understand the query result. To support the user in

understanding the results, we will provide tools to visualize the query result, inspect parts of

it, as well as visualizations of the underlying data schema, as these help the user to gain an

understanding of it. The second challenge stems from the comparison of the result to

expected outcomes. The expected outcomes are formally specified only in a few cases; in most

cases, the expected outcome exists in the users’ head only, either as visceral or conscious

thoughts. To extract that knowledge, we intend to provide tools for memorizing, arranging,

annotating and structuring query results, which in turn will ease the comparison of the actual

result to the expected. Finally, users draw conclusions from the outcomes, which inform the

decision on how to continue and thus can be used to feed into the next iteration.

The other goal of this task is the provision of guidance to assist users in their exploration

process of query results. A process is guided, if advice is given or information is presented that

helps overcoming a problem or difficulty. In the context of visual analytics, Ceneda et al

provide a more formal definition, which we adopt: “Guidance is a computer-assisted process

that aims to actively resolve a knowledge gap encountered by users during an interactive

visual analytics session”. Guidance is particularly relevant in situations where the user is

unable to identify, judge or execute an action. The assistance of how to execute an action is

discussed in Section 4.3 and the assistance in identification of actions to take is discussed in

Section 4.4. Assistance support to judge the results of a query action thus is the main priority

of this task. Ceneda et al. describe the degrees of guidance which ranges from “orienting” over

“directing” to “prescribing”. While Section 4.3 describes prescribing guidance in the sense that

the user is guided through a fixed pipeline of steps, this task focuses on orienting guidance

within the visual result presentation. That is, in the visual representation of a query result, we

want to help the user to explore and build a mental map of it. Providing tools to find the

relationships between data subsets, patterns, or attributes in the data is the first step,

suggesting the right tools at the right time is the second one, which heavily depends on the

outcomes of the questionnaires filled out by the end users.

Task 7.2 - Interactive manipulation and optimization of queries

The goal of this task is to enable the user to steer the exploration process without formulating

queries at all. This will be realized via a direct manipulation mechanism in the visual result

presentations. As this task starts in M13, we expect to gather more requirements in the first

months of T7.2.

Task 7.3 - Integrated seamless query-response loop

The goal of this task is to reduce the overhead implied by switching between different

exploration and query manipulation modes. Another goal of this task is to provide additional

 D2.1 Requirements and use case specification

Page 61 of 89

components, which target specific user groups. As T7.3 starts in M13, we expect to gather

more requirements in the first few months of T7.3.

4.5.3 Requirements implied by the technology elements

The requirements that are introduced by these specific technology elements are presented in

the consolidated table (Table 5-1) under Category 1 Group 7 (as functional requirements

coded as R1.7.1 to R1.7.19).

 D2.1 Requirements and use case specification

Page 62 of 89

5 REQUIREMENTS CONSOLIDATION AND

CATEGORIZATION

This section provides a consolidated view of the aforementioned described requirements so

as to arrive at a unique coding of all individual requirements that can be tracked throughout

the lifecycle of the project. The following table gives an overview of the elicited requirements

of the INODE project. We emphasize that the requirements are derived not only from the use

cases, but also from a range of other factors including the partners’ background projects,

state-of-the-art projects, and requirements expressed by the project stakeholders. The

selection of requirements has been also driven by:

● The need to address, design and implement the innovative features of the INODE

framework as listed in the Description of Action giving a particular emphasis on the

various key performance indicators (KPIs) that have been defined for the success of

the project.

● Specific tangible improvements that must be realized on essential INODE components

for being able to deliver the INODE service suite offering.

● The functionalities to be delivered in order to support the project's three use cases.

The overall requirements analysis coding and consolidation has been based on the well-

established process of dividing the requirements into functional and non-functional ones.

Functional requirements:

The functional view of a requirements analysis process focuses on what the system must do

to produce the required operational behavior. It includes inputs, outputs, states, and

transformation rules. Functional view information includes:

• system functions

• tasks or actions to be performed,

• inter-function relationships,

• functional constraints,

• interface requirements.

Non-functional requirements:

The non-functional view of a requirements analysis process focuses on what other technical

features the system must have in order to facilitate the service provision. These include among

others:

• scalability,

• performance,

• reliability and availability,

• manageability and flexibility,

• security,

• openness and extensibility requirements.

Overall requirements consolidation and coding

The approach that has been followed for the coding, provides a distinction between

Functional (denoted as R1 Category) and Non-functional Requirements (denoted as R2

 D2.1 Requirements and use case specification

Page 63 of 89

Category), while the requirements have been grouped accordingly into various Groups, as

designated in the following table (Table 5-1).

The first column of the table below provides the unique coding for each requirement that will

make it traceable within the lifecycle of the project. The second column gives the description

of each requirement, while the third column describes any dependencies or comments related

to each requirement. The fourth column provides the details on the origin of each

requirement, thus linking it with the requirements summary of the use cases or the subsection

related with the “Requirements implied by the technology elements” that have been provided

by the various INODE partners. Moreover, requirements that have been derived from other

factors such as the KPIs that are globally identified in the description of the project have been

appropriately indicated in the specific column. The fifth column denotes the relevant

stakeholders for each requirement. A rationale behind the content of this specific column is

provided in Table 5-2.

 D2.1 Requirements and use case specification

Page 64 of 89

Table 5-1 Consolidated and coded requirements.

Category R1: Functional Requirements

Group 1: INODE Generic Functional Requirements

Code Requirement Description
Relationship with

other requirements
Origin of requirement Relevant stakeholders

R1.1.1 The platform should provide registration and sign-in
functionalities for the following roles: users, administrators.

 All use cases Service providers & Integrators

R1.1.2 The platform should provide analytics functionalities. R1.3.3 All use cases Service providers & Integrators

R1.1.3 The platform should provide a dashboard in order to present
results of analysis. R2.2.2 All use cases Service providers & Integrators

R1.1.4 The platform should provide real-time data processing
functionalities. R2.2.1 All use cases Service providers & Integrators

R1.1.5 The platform should be able to access online data, e.g. from
web sites and open data repositories. R1.3.1 All use cases Service providers & Integrators

R1.1.6 The platform should be able to collect and store data from new
data sources. R1.2.4, R1.3.2 All use cases Service providers & Integrators

R1.1.7 The platform should be able to connect to different backends
for querying data.

 All use cases Service providers & Integrators

R1.1.8 The platform should provide user interaction functionalities. R1.2.2, R1.2.6 All use cases Service providers & Integrators

R1.1.9 The platform should provide composable exploration
operators. R1.6.4, R1.7.1 All use cases Service providers & Integrators

Group 2: INODE Use Case Specific Requirements

Code Requirement Description
Relationship with

other requirements
Origin of requirement Relevant stakeholders

 D2.1 Requirements and use case specification

Page 65 of 89

R1.2.1

INODE should accept simplified natural language questions,
efficiently translate such questions into a valid database-

specific query language (SQL in the case of SDSS database) and
retreive relevant properties of astronomical objects in the

form of numerical tables.

 UC3-Astrophysics Scientists with proprietary access

R1.2.2

INODE should allow a relatively untrained user (e.g.
investigator) to perform meaningful queries quickly. Untrained

may mean to be untrained in the domain (e.g. astronomy),
untrained in the data schemas, database models and/or

untrained in structured query languages (e.g. SQL, SPARQL).

R1.1.8
UC3-Astrophysics

UC1.1-Cancer Research
UC2-R&I Policy Making

Scientists with proprietary access
General public

Bioinformatician
Researcher/Biologist

Policy maker

R1.2.3
INODE should provide disambiguation mechanisms to ask back

where questions were not clear enough or where specific
answers require more precise questioning.

R1.2.5

UC3-Astrophysics
UC1.1/UC1.2-Cancer

Research
UC2-R&I Policy Making

Scientists with proprietary access
Bioinformatician

Researcher/Biologist
Policy maker

R1.2.4

INODE should allow to bring data from multiple datasets
together seamlessly such that investigators do not have to
learn schemas of new databases painstakingly before being

able to ask meaningful questions and to correctly interpret the
results.

R1.1.2, R1.1.5,
R1.1.6

UC3-Astrophysics
UC2-R&I Policy Making

Data Curator, Scientists with
proprietary access

Policy maker

R1.2.5

INODE should allow queries to be developed in a
conversational sense: “Give me all objects like ...” -> “Now

show me the following properties...” -> “Downselect according
to a specific parameter” -> “Give me all the spectra of

those...” - > “Show me the derived star formation rates”

R1.2.2 UC3-Astrophysics
UC1.1-Cancer Research

Scientists with proprietary access
General public

Bioinformatician
Researcher/Biologist

R1.2.6

INODE should provide the possibility to help any non-technical
clients (end users) autonomously querying by natural language
(NL) and by exploration. In the context of cancer research, this
means to be able to interactively build a query by exploring the

datasets and based on an initial NL query.

 UC2-R&I Policy Making
UC1.6-Cancer Research

End user/Policy maker
Bioinformatician

Researcher/Biologist

 D2.1 Requirements and use case specification

Page 66 of 89

R1.2.7

Given the extremely low technical skills of a typical user, it is
likely that exploration services will be yet too complex in most

of the cases, therefore INODE should prioritise (in terms of
development) the development of NL querying over

exploration.

 UC2-R&I Policy Making
UC1.6-Cancer Research

End user/Policy maker
Bioinformatician

Researcher/Biologist

R1.2.8
INODE should provide functionalities in terms of supporting

the generation of mappings between the database, the
ontology, and in the formulation of the ontology itself.

R1.3.4 UC2-R&I Policy Making
UC1-Cancer Research

Data manager (UC1)
Data administrator (UC2)

R1.2.9
INODE should provide analytical queries in SQL terms, that
would be queries with aggregation functions such as count,

sum, etc. with some filters applied to it.
 UC2-R&I Policy Making Non-expert user/Policy maker

R1.2.10 INODE should deliver the replies in a tabular format that can
be exported into several file formats. R1.2.17

UC2-R&I Policy Making
UC1.3/UC1.4-Cancer

Research

Non-expert user/Policy maker
Statistician (UC2)
Bioinformatician

Researcher/Biologist

R1.2.11
INODE should provide an API-like interface, with predefined

queries that users can just parameterize to get a dump of the
data that is relevant to their study.

R1.2.19 UC2-R&I Policy Making
UC1.10-Cancer Research

Statistician
Bioinformatician

R1.2.12
The platform should enable access to a public portal with

visualizations, possibly embedded in a narrative that puts them
in context, following a story-telling approach.

 UC2-R&I Policy Making Citizen

R1.2.13 The system should show provide query results in tabular
format.

 UC1.4-Cancer Research
UC2

Bioinformatician
Researcher/Biologist

R1.2.14 The system should visualize the query result as infographics
(e.g. diagrams)

 UC1.4-Cancer Research
UC2

Bioinformatician
Researcher/Biologist

 D2.1 Requirements and use case specification

Page 67 of 89

R1.2.15 The system should suggest data visualisations (e.g. diagrams)
based on the contents of the query result

 UC2-R&I Policy Making
Researcher/Biologist

Bioinformatician
Policy maker

R1.2.16 The platform should save the exploration sequence itself, so
that it is repeatable if the dataset has been updated

 UC2-R&I Policy Making Policy maker

R1.2.17

The platform should provide a download option for query
results in several formats (e.g. XLSX, CSV, JSON, XML) by also
providing the schema (e.g. xsd) when it is applicable. A XLSX

spreadsheet file may include data visualizations.

 UC1.3-Cancer Research
UC2-R&I Policy Making

Non-expert user/Policy maker
Statistician (UC2)
Bioinformatician

Researcher/Biologist

R1.2.18 The platform should display on demand how portions of the
underlying data are structured at a conceptual level. R1.2.23, R1.2.7 UC1.4/UC1.5-Cancer

Research
Researcher/Biologist

Bioinformaticien

R1.2.19 The platform should allow for query processing (e.g. creating,
editing and deleting a query) in the query template catalogue. R1.2.21 UC1.10-Cancer Research Bioinformaticien

R1.2.20 The platform should enable the user to select and execute a NL
query from a template catalogue R1.2.19 UC1.10-Cancer Research

UC2 Bioinformaticien

R1.2.21 The platform should provide a SPARQL editor with auto-
completion features.

 UC1.9-Cancer Research Bioinformaticien

R1.2.22 The platform should provide simplified query language
functionalities as a command line interface (CLI)

 UC1.11-Cancer Research Bioinformaticien

R1.2.23 The platform should allow the visualisation of large controlled
vocabularies and ontologies.

 UC1.5-Cancer Research Researcher/Biologist
Bioinformaticien

R1.2.24 The platform should enable the user to select specific query
result attributes (query projection).

R1.2.5, R1.2.2,
R1.2.3 UC1.2-Cancer Research Researcher/Biologist

Bioinformaticien

R1.2.25 The platform should provide exporting functionalities of the
built queries.

R1.2.20, R1.2.21,
R1.2.22 UC1.7-Cancer Research Researcher/Biologist

Bioinformaticien

 D2.1 Requirements and use case specification

Page 68 of 89

R1.2.26 The platform should allow the user to import queries from .rq
files. R1.2.21 UC1.8-Cancer Research Researcher/Biologist

Bioinformaticien

R1.2.27
The platform should recommend natural language queries

related to the user's previous search so as to assist in further
exploring the data.

R1.2.6 UC2-R&I Policy Making Policy maker

Group 3: Integrated Query Processing Services Requirements

Code Requirement Description
Relationship with

other requirements
Origin of requirement Relevant stakeholders

R1.3.1 The platform should be able to deal with rich datatypes in
datasources, as well as heterogeneous datasources. R1.1.5 Task 3.1 All users

R1.3.2 The platform should be able to perform query processing tasks
over multiple federated data sources. R1.1.6 Task 3.2 All users

R1.3.3 The platform should allow the user to perform complex
analytics tasks. R1.1.2 Task 3.3 All users

R1.3.4

The platform should be able to provide a justification to the
answers produced. Such justification should contain

information relative to the ontology axioms, to the mappings
assertions, to the database tables, and also to individual tuples

used to build the answer. The information should be
presented in a compact and understandable way.

 Task 3.4 All users

Group 4: Data Linking and Modeling Services

Code Requirement Description
Relationship with

other requirements
Origin of requirement Relevant stakeholders

R1.4.1
INODE should provide functionalities in terms of supporting

the generation of mappings between the database, the
ontology, and in the formulation of the ontology itself.

 Task 4.1, Task 4.2 Developers, Domain Experts,
Scientists

 D2.1 Requirements and use case specification

Page 69 of 89

R1.4.2

The platform should facilitate novel user needs that are not
met by the available data by enriching the existing mapping

with the integration of available (but not yet integrated) data
sources (task-driven mapping).

R1.1.6 Task 4.1 Domain Experts and Scientists

R1.4.3
The platform should allow the user to view the mutual

information from new data sources by correlating them to
existing ontologies (data-driven mapping).

 Task 4.2 Domain Experts and Scientists

R1.4.4

The platform should leverage ML/DL methods for automated
entity and relation extraction from unstructured data (text),

leading to automated knowledge graph creation (KG creation
based on text).

R1.1.2 Task 4.3 Domain Experts

R1.4.5
The platform should expand the developed ML/DL methods for

automated entity and relation extraction to facilitate task-
driven mapping (KG creation based on structured data).

R1.1.2 Task 4.4 Domain Experts

R1.4.6 The platform should provide fine-tuned methods for reliable
entity extraction that are suitable for domain-specific corpora.

 Task 4.3 All users

R1.4.7

The platform should be able to adapt the output knowledge
graph to fit the requirements of other components within the

system (such as altering its structure or contents to fit the
current information need).

 Task 4.3 Domain Experts, End Users,
Developers

R1.4.8
The platform should improve the quality of the extracted

ontologies, dealing with underlying binding syntactic
phenomena such as anaphora resolution.

 Task 4.3 Domain Experts and End Users

Group 5: Data Access & Exploration Requirements

Code Requirement Description
Relationship with

other requirements
Origin of requirement Relevant stakeholders

R1.5.1 Several interpretations of by-example exploration should be
made available and composable. R1.1.9 Task 5.1 All users

 D2.1 Requirements and use case specification

Page 70 of 89

R1.5.2 Several interpretations of by-analytics exploration should be
made available and composable. R1.1.9 Task 5.2 All users

R1.5.3 Intermediate steps of query processing should be shown to
better understand how results were derived

 Task 5.3 Developers and end users

R1.5.4 NL queries and SQL/SPARQL should be logged for collecting
training data for ML algorithms

 Task 5.3 Developers and end users

Group 6: User Assistance Requirements

Code Requirement Description
Relationship with

other requirements
Origin of requirement Relevant stakeholders

R1.6.1 The platform should provide assistance to all types of users
when exploring data. R1.2.6 Task 5.1, Task 5.2, Task 6.1,

Task 6.2 All users

R1.6.2 The platform should provide guidance in building and
executing exploration pipelines.

 Task 5.1, Task 5.2, Task 6.1 All users

R1.6.3 The platform should help users choose operators at each step
of the exploration pipeline.

 Task 5.1, Task 5.2, Task 6.1 All users

R1.6.4 The platform should help users select attributes for exploration
operators.

 Task 5.1, Task 5.2, Task 6.1 All users

R1.6.5 The platform should generate natural language explanations
for queries that are ambiguous R1.2.3

Task 6.2, Task 5.3 (for
queries that are issued by

users)
All users

R1.6.6 The platform should generate natural language explanations
for parts of complex queries that are ambiguous R1.2.3

Task 6.2, Task 5.3 (for
queries that are issued by

users)
All users

 D2.1 Requirements and use case specification

Page 71 of 89

R1.6.7 The platform should generate natural language explanations
for different datasets R1.2.3

Task 5.3 (for queries that are
issued by users) Task 6.1 (for

query recommendations)
All users

R1.6.8 The platform should generate natural language explanations
for results R1.2.3

Task 5.1, Task 5.2, Task 5.3
(results of queries that are

issued by users as described
in these tasks)

All users

R1.6.9
The platform should allow a domain expert to provide

annotations for parts of a dataset so that the platform can
generate more meaningful NL explanations

 Task 6.2 domain expert

R1.6.10 The platform should allow a user to provide feedback and
corrections for NL explanations generated by the system

 Task 6.2 All users

R1.6.11 The platform should leverage user-provided annotations to
generate more meaningful NL explanations

 Task 6.2 All users

R1.6.12 The platform should provide query recommendations so as to
assist in further exploring the data R1.2.2, R1.2.27 Task 6.1 All users

R1.6.13 The platform should provide query recommendations in cold-
start situations (no user information) R1.6.12 Task 6.1 All users

R1.6.14 The platform should provide query recommendations in cold-
start situations (no user logs) R1.6.12 Task 6.1 All users

R1.6.15 The platform should provide query recommendations for
different datasets R1.6.12 Task 6.1 All users

R1.6.16 The platform should allow a user to provide feedback on query
recommendations generated by the system

 Task 6.1 All users

 D2.1 Requirements and use case specification

Page 72 of 89

R1.6.17 The platform should leverage user-provided feedback to
generate query recommendations

 Task 6.1 All users

R1.6.18
The platform should generate natural language explanations

for queries to enable a bi-directional conversational experience
between the user and the system.

R1.2.5 All use cases. Service providers & Integrators

R1.6.19 The platform should log queries and user feedback for
improving user experience

 All use cases. Service providers & Integrators

Group 7: Multi-Modal Discovery Services Requirements

Code Requirement Description
Relationship with

other requirements
Origin of requirement Relevant stakeholders

R1.7.1 The user should be able to steer the exploration process
without formulating queries at all. R1.2.7 Task 7.2 All users

R1.7.2 The user should be able to manipulate the visual result
presentations to change queries R1.2.12, R1.2.14 Task 7.2 All users

R1.7.3 The user should be able to remove irrelevant search results
from the screen

 Task 7.2 All users

R1.7.4 The user should be able to promote relevant search results Task 7.2 All users

R1.7.5 The user should be able to provide relevance feedback on
search results R1.1.8 Task 7.2 All users

R1.7.6 User session context should be incorporated into the query
generation for more focused search

 Task 7.2 All users

R1.7.7 Retrieval of ontologies via OWL format from the data base
must be available

 Task 7.1 All users

R1.7.8 Retrieval of data in RDF, CSV, JSON-LD from the data base must
be available

 Task 7.1 All users

R1.7.9 Access to data base schema or data base ontology should be
possible

 Task 7.1 All users

 D2.1 Requirements and use case specification

Page 73 of 89

R1.7.10 Access to additional documentation of a data base / data
schema / data ontology should be possible

 Task 7.1 All users

R1.7.11
Result set meta-information should be available, including

basic meta-information like (estimated) number of results, and
total number of attributes,

R1.2.13 Task 7.1 All users

R1.7.12 Result set ontology pointers should be available, so that
column/cell-related meta-information can be accessed. R1.2.13 Task 7.1 All users

R1.7.13 Data should be retrievable in portions (in a “Paging” fashion)
form the data bases R1.2.13 Task 7.1 All users

R1.7.14

The scale of measurement must be available for each column
in the result set. In other words, the query result has to

provide hints to the visualization system so that it can infer
whether a data variable is of nominal, ordinal, interval, and

ratio scale as defined by Stevens.

R1.2.14 Task 7.1 All users

R1.7.15

Data scale meta information should be available, such as, but
not limited to: (a) The full enumeration of available options for

nominal data, (b) the ordering of elements for ordinal data.
(e.g. age groups: „Younger than 18“,“18-66“,“Older than 67“),
and (c) numerical bounds as well as inclusivity and exclusivity

for interval and ratio scales.

R1.2.14 Task 7.1 All users

R1.7.16 Retrieval of ontologies from the data base must be available R1.2.23 Task 7.1 All users

R1.7.17 Retrieval of portions of the ontology in case of very large
ontologies should be available R1.2.23 Task 7.1 All users

R1.7.18
User Assistance may provide additional information to enable

mapping between NL utterance and translated SPARQL
response

R1.2.2 Task 7.1 All users

R1.7.19 Relevance rating of individual query terms should be possible. R1.7.1 Task 7.2 All users
Category R2: Non-Functional Requirements

Group 1: Scalability

 D2.1 Requirements and use case specification

Page 74 of 89

Code Requirement Description
Relationship with

other requirements
Origin of requirement Relevant stakeholders

R2.1.1
INODE must be able to scale with respect to more data

sources. In this way, the number of data resources should not
be limited in a hard way.

R1.1.6 All use cases Infrastructure Providers, Service
Integrators

R2.1.2

The query engine should be able to respond to user queries
from the use cases, and moreover should be able to handle
multiple users of the use cases at once, such that results are

obtained quickly even under load.

R1.1.4 All use cases Infrastructure Providers, Service
Integrators

R2.1.3
The analytics components of the platform should be able to

deal with the computational and memory limitations posed by
large datasets.

R1.4.7 Task 4.3 Infrastructure Providers, Service
Integrators, Developers

R2.1.4

INODE should be capable of accessing Terrabytes of
astronomical data available in SDSS database and should also
be able to scale with inclusion of other databases for example

from other astronomical surveys like HETDEX, EUCLID, etc.

R1.3.2 UC3-Astrophysics Data Curator, Scientists with
proprietary access

Group 2: Performance

Code Requirement Description
Relationship with

other requirements
Origin of requirement Relevant stakeholders

R2.2.1

INODE deploys various big data analytics frameworks that have
demands in computational power. They should be regularly

evaluated during development, such that they are shown to be
accurate with real-time data.

R1.4.5 All use cases Infrastructure Providers, Service
Integrators

R2.2.2 Statistics and reports that should be displayed through the
dashboard is a process with high performance needs. R1.1.3 All use cases Infrastructure Providers, Service

Integrators

R2.2.3
The platform should provide at least 50% reduction in

time/effort spent by a user to complete successfully an
exploration task

R1.2.6 KPI1 End users

 D2.1 Requirements and use case specification

Page 75 of 89

R2.2.4

The platform should provide at least 80% precision of the
majority of natural language queries for specific uses cases
that are developed in close cooperation with the three use

case providers.

R1.2.5 KPI2 End users

R2.2.5 The platform should provide at least 30% reduction in
performance overhead of federated INODE queries R1.3.2 KPI4 Infrastructure Providers, Service

Integrators

R2.2.6 All by-example and by-analytics explorations should be
optimized to provide interactive times. R1.2.6 Task 5.1 , Task 5.2 All users

R2.2.7
Query results should be shown within less than a minute. If not

possible, partial results should be shown or a progress with
roughly estimates about the response time

R1.2.13 Task 5.3 End users

R2.2.8

The system should allow for the efficient syntactic parsing of
unstructured text, along with supporting large heap-based

graph libraries for efficient knowledge graph modification and
traversal.

R1.4.4 Task 4.3 Infrastructure Providers, Service
Integrators

R2.2.9
The platform should allow for the training of the latest deep-
learning models with intense computational and in-memory

processing requirements.
R1.4.4, R1.4.5 Task 4.3 Infrastructure Providers, Service

Integrators, Developers

R2.2.10 The analytics components (e.g. ML/DL models) of the platform
should provide results in less than one minute. R1.4.4, R1.4.5 Task 4.3 Infrastructure Providers, Service

Integrators, Developers

R2.2.11 Query recommendations should be optimized to provide
interactive times. R1.6.12 Task 6.1 All users

R2.2.12 Natural language explanations should be generated for the
majority of common structured queries. R1.6.5, R1.6.6 Task 6.1 All users

Group 3: Security and Privacy

 D2.1 Requirements and use case specification

Page 76 of 89

Code Requirement Description
Relationship with

other requirements
Origin of requirement Relevant stakeholders

R2.3.1 INODE platform should respect data access policies. R1.1.1 UC3-Astrophysics System administrator

R2.3.2 INODE should be capable of managing different user profiles
distinguishing between user roles. R1.1.1 All use cases System administrator

R2.3.3 INODE, in accordance with privacy policies, should store
privacy covered data in a protected way. R1.6.19 All use cases System administrator

R2.3.4 Access to protected data should be possible only to authorized
operators. R2.3.1 All use cases System administrator

R2.3.5
The applications and technologies used in INODE must respect
all regulations concerning the ethical aspects, especially those

related with data protection and privacy.
R1.1.1 All use cases System administrator

R2.3.6 INODE should cover with state of the art technologies all the
aforementioned security aspects. R1.1.1 All use cases System administrator

R2.3.7 INODE should be compatible with the FAIR principles as well as
the security principles of EOSC R1.1.1 All use cases System administrator, EOSC

Community

Group 4: Reliability and Availability

Code Requirement Description
Relationship with

other requirements
Origin of requirement Relevant stakeholders

R2.4.1
INODE should have a high availability and reliability (e.g. more

than 90% in regular operation during the pilots) that can be
monitored, measured and audited.

 All use cases Infrastructure Providers, Service
Integrators

R2.4.2
In case of failures, measures have to be taken in order to

overcome these in short notice and additional measures for
preventing their occurrence.

 All use cases Infrastructure Providers, Service
Integrators

Group 5: Manageability and flexibility

 D2.1 Requirements and use case specification

Page 77 of 89

Code Requirement Description
Relationship with

other requirements
Origin of requirement Relevant stakeholders

R2.5.1
INODE should provide a 50% reduction in time/effort spent on

integrating new data sources with INODE compared to
integrating data without INODE.

R1.3.2 KPI3 End users

R2.5.2 INODE should have a high manageability and flexibility even for
users that are not considered experts. R1.2.2 All use cases Service providers, Integrators,

EOSC Community

R2.5.3 Common management attributes such as add/delete/update
should be intuitive and easy to be performed. R1.2.19 All use cases Service providers, Integrators,

EOSC Community

R2.5.4 Users should be able to “Search anywhere” in order to learn
quickly about individual pieces of information

 All use cases End users

Group 6: Modularity

Code Requirement Description
Relationship with

other requirements
Origin of requirement Relevant stakeholders

R2.6.1 The INODE architecture should follow a layered and modular
approach.

 All use cases Service providers, Integrators

R2.6.2
The INODE modularity level should allow enough

independence of all modules so as if any module needs to be
replaced, this will have no consequences to the other modules.

 All use cases Service providers, Integrators

Group 7: Openness and Extensibility

Code Requirement Description
Relationship with

other requirements
Origin of requirement Relevant stakeholders

R2.7.1 The various components of INODE should be portable across
major operating systems.

 All use cases Service providers, Integrators,
EOSC Community

R2.7.2 The various components of INODE should be interoperable
with other services implementing common and open standards

 All use cases Service providers, Integrators,
EOSC Community

 D2.1 Requirements and use case specification

Page 78 of 89

R2.7.3 The core components of the INODE framework should be
extensible to new types of data structures. R1.1.6 All use cases Service providers, Integrators,

EOSC Community

R2.7.4 INODE APIs should rely on open standards and built upon
other existing open standards where possible.

 All use cases Service providers, Integrators,
EOSC Community

R2.7.5 INODE should provide programming interfaces for application
developers to gather real-time and historic data. R1.6.19 All use cases Service providers, Integrators,

EOSC Community

R2.7.6 INODE should reuse existing open source software and tools,
where it is appropriate and possible according the license.

 All use cases Service providers, Integrators,
EOSC Community

R2.7.7 The architecture of INODE must be open, extensible, providing
the ability to add new functional components.

 All use cases Service providers, Integrators,
EOSC Community

Table 5-2 A short description of the different stakeholders that are mentioned in the consolidated requirements table.

Stakeholder Explanation

All users The full set of users that will have access to the INODE platform

Bioinformaticians
A subset of end-users that have interest in cancer biomarkers and related data with the following roles: data scientist, ontologist,

bioinformatics teacher, clinical bioinformatician, computer scientist, knowledgebase developer, post-doc in bioinformatics and
student.

General public/ Citizens
General public consuming information from the INODE platform (usually through public institutions), having access to a public portal

with embedded visualizations in a story-telling approach.

Data administrators /Data
managers

Responsible for hosting the databases, managing the data sources by integrating new ones and updating and transforming the existing
ones, access (e.g., Web) and the INODE infrastructure and architecture.

Data Curators
Scientists with access to specific data sets either through their affiliation with a particular project or a specific institution, responsible

for setting the permissions and updating them as proprietary periods are ending.

 D2.1 Requirements and use case specification

Page 79 of 89

Developers Responsible for maintaining the system, fixing bugs and integrating new features.

Domain Experts Analysts mainly interested in identifying, generating and exploiting mappings between the extracted ontologies of a specific dataset.

End users
The superset of non-technical users (e.g.policy makers, administrators, bioinformaticians, researchers, scholars etc.) that perform data

exploration activities to gain insights.

EOSC Community Users having access to the European Open Science Cloud (EOSC) hub, a trusted digital platform for the scientific community.

Infrastructure Providers Stakeholders that will offer their existing infrastructure systems to be utilized for or connected to the INODE platform.

Non-expert user/Policy
maker

A subset of end-users that access a collection of relevant datasets in a homogeneous way so that they can make informed decisions.

Researcher/Biologist
A subset of end-users composed of scientists that have interest in cancer biomarkers and related data with the following roles: data

scientist, ontologist, bioinformatics teacher, clinical bioinformatician, computer A subset of end-users, scientist, knowledgebase
developer, post-doc in bioinformatics and student.

Scientists with proprietary
access

A subset of end-users with access to specific astronomical data sets either through their affiliation with a particular project or a specific
astronomical institution.

Service providers &
Integrators

Responsible for defining the platform's service level targets.

Statisticians A subset of end-users that acquire raw data from the platform and do the analysis themselves with their own tools.

System administrators Responsible for creating and managing the system user profiles.

 D2.1 Requirements and use case specification

Page 80 of 89

6 CONCLUSIONS

This document presented a first approach to define the use cases and to identify the functional
and non-functional requirements, actors (i.e., stakeholders), and the main technologies used
to address the requirements. The presented requirements analysis was conducted from both
the business and the technical partners of the consortium. Use case providers detailed real-
life industrial requirements that if addressed by INODE will enhance existing products and
solutions. At the same time, technology providers defined a list of requirements that will
ensure that INODE will utilize innovative algorithms and modules, avoiding technical obstacles
and limiting the possibility of deviating from the project’s objectives and initial vision.

The requirements collected from the three use case providers will be used to create a system
that is reasonably complex and feasible to implement, being compatible with existing state-
of-the-art IT infrastructures. In addition, the listing of the available technology elements
involved in the project along with their role, key features, and relation to the platform’s
envisioned functionalities, resulted in an additional set of high-level requirements that will
drive the design task forward. This deliverable aimed at consolidating the aforementioned
requirements from different actors and components, so that the implementation of the
platform can be effectively carried out and collaboration or synergies among different system
developers and partners can be facilitated. All INODE partners contributed to this endeavor,
achieving a consensus among the consortium members on the next phase of the system
design: the system architecture.

 D2.1 Requirements and use case specification

Page 81 of 89

REFERENCES

	
[1] Eckhouse, S., Lewison, G., & Sullivan, R. (2008). Trends in the global funding and activity

of cancer research. Molecular oncology, 2(1), 20-32.

[2] Diego Calvanese, Benjamin Cogrel, Sarah Komla-Ebri, Roman Kontchakov, Davide Lanti,
Martin Rezk, Mariano Rodriguez-Muro, and Guohui Xiao. Ontop: Answering SPARQL
queries over relational databases. Semantic Web J., 8(3):471– 487, 2017. doi:
10.3233/SW-1602.

[3] Guohui Xiao, Diego Calvanese, Roman Kontchakov, Domenico Lembo, Antonella Poggi,
Riccardo Rosati, and Michael Zakharyaschev. Ontology-based data access: A survey. In
Proc. of the 27th Int. Joint Conf. on Artificial Intelligence, (IJCAI 2018), pages 5511–5519.
IJCAI Org., 2018. doi: 10.24963/ijcai.2018/777.

[4] Antonella Poggi, Domenico Lembo, Diego Calvanese, Giuseppe De Giacomo, Maurizio
Lenzerini, and Riccardo Rosati. Linking data to ontologies. J. on Data Semantics, 10:133–
173, 2008. doi: 10.1007/978-3-540-77688-8_5.

[5] Roman Kontchakov, Martin Rezk, Mariano Rodriguez-Muro, Guohui Xiao, and Michael
Zakharyaschev. Answering SPARQL Queries over Databases under OWL 2 QL Entailment
Regime. In Proc. of the 13th International Semantic Web Conference (ISWC 2014), pages
552-567, Lecture Notes in Computer Science 8796, Springer, 2014. doi: 10.1007/978-3-
319-11964-9_35.

[6] Ana Claudia Sima, Tarcisio Mendes de Farias, Erich Zbinden, Maria Anisimova, Manuel Gil,
Heinz Stockinger, Kurt Stockinger, Marc Robinson-Rechavi, Christophe Dessimoz:Enabling
semantic queries across federated bioinformatics databases. Database 2019:, : baz106
(2019)
https://academic.oup.com/database/article/doi/10.1093/database/baz106/5614223.

[7] Danae Pla Karidi, Yannis Stavrakas, and Yannis Vassiliou. Tweet and Followee Personalized
Recommendations Based on Knowledge Graphs. Journal of Ambient Intelligence and
Humanized Computing, 9(6):2035-2049, 2018.

[8] Mariia Selezniova, Behrooz Omidvar-Tehrani, Sihem Amer-Yahia, Eric Simon. Guided
Exploration of User Groups. Under review, 2020.

[9] Andreas Kokkalis, Panagiotis Vagenas, Alexandros Zervakis, Alkis Simitsis, Georgia
Koutrika, and Yannis Ioannidis. 2012. Logos: a system for translating queries into
narratives. In Proceedings of the 2012 ACM SIGMOD International Conference on
Management.

 D2.1 Requirements and use case specification

Page 82 of 89

LIST OF FIGURES

Figure 2-1 Requirements analysis methodology ... 8	
Figure 3-1 The figure first shows how INODE supports a user in disambiguating a query based

on an existing data sample and a knowledge graph that provides structure to the
introduced query dimensions. In the second interaction, we see how INODE expands the
answers (which can be ‘easily’ retrieved from the EU-CORDIS repository) thanks to the
integration of the OpenAIRE data about EU-funded projects’ publications. 11	

Figure 3-2 Here INODE relies on the integration with yet another repository that is managed
by the European Patent Office (EPO) called ESPACENET. Notice that the above scenario
is particularly difficult to deal with. On the one hand, the required data integration among
EPO, OpenAIRE, and CORDIS is not straightforward. On the other hand, the currently
available open repositories on patents (such as ESPACENET) do not provide structured
information about the references to scientific publications yet. Analytically, INODE is
finally able to show the requested records by joining the scholars of the Tuscan
universities (see, CercaUniversità CINECA) with the previously retrieved data. 12	

Figure 3-3 In the last step of the interaction, INODE accesses data from EUROSTAT in order to
find the Tuscany-related baseline. Afterwards, INODE retrieves the data about European
regions in order to recreate the ranking needed and finally computes the value for the
required indicator. .. 12	

Figure 3-4 Use case diagram for R&I. .. 19	
Figure 3-5 Green Pea galaxies recently gained a fair bit of attention in astronomy as one of the

potential sources that drove cosmic re-ionization. First discovered in the Galaxy Zoo
project, they appeared green and compact in the recorded imaging data and fall into an
unusual region of color-color diagrams of galaxies. A consequent selection in color space
led to a detection of a large sample of objects that all exhibit strong emission lines and
unusually high star formation rates that are much more common in the very young
Universe. The figure shows three queries by example (QBE) of analyzing astrophysics data
with INODE. ... 25	

Figure 3-6 Use case diagram for astrophysics. .. 29	
Figure 3-7 Natural language query interface with user assistance. Step 1: user enters query in

natural language. Step 2: INODE parses query and matches keywords against the
available ontology. Step 3: INODE provides user assistance by disambiguating terms and
suggesting alternatives. Step 4: results are shown. .. 36	

Figure 3-8 Visualization of cancer types identified with the natural language query in Figure 8.
The left-hand side shows various cancer types that are similar to lung cancer. The
distance between the diseases can be chosen by the user, e.g., by distance in disease
ontology. The right-hand side shows biomarkers related to lung cancer. Here, the cancer
type and the distance can be chosen by the user. .. 37	

Figure 3-9 The UML use case diagram for of the Cancer Biomarker Research use case illustrates
an overview of the query in natural language and related requirements for the
Research/biologist and bioinformatician profiles. .. 44	

 D2.1 Requirements and use case specification

Page 83 of 89

 LIST OF TABLES

Table 3-1 R&I Stakeholders table. ... 14	
Table 3-2 Detailed view of the R&I use case. .. 19	
Table 3-3 Astrophysics Stakeholders table. ... 26	
Table 3-4 Detailed view of the Astrophysics use case. .. 29	
Table 3-5 Cancer Biomarker Research Stakeholders table. .. 39	
Table 3-6 Cancer Biomarker Research Queries. .. 42	
Table 3-7 Detailed view of the Cancer Biomarker Research use case. 45	
Table 5-1 Consolidated and coded requirements. .. 64	
Table 5-2 A short description of the different stakeholders that are mentioned in the

consolidated requirements table. ... 78	

 D2.1 Requirements and use case specification

Page 84 of 89

ANNEX: SQL QUERIES

This Annex provides the SQL code of the queries mentioned in the Use Cases.

UC2: Research and Innovation Policy Making

Query UC2-Q1:
select
 q1.year,
 (cast(q1.member_funding as numeric)/cast(q2.total_funding as
numeric))*100
 as percentage_of_funding
from
(
 select
 p.start_year as year, sum(pm.ec_contribution) as member_funding
 from
 unics_cordis.projects p
 join
 unics_cordis.project_members pm
 on pm.project=p.unics_id
 join
 unics_cordis.nuts_hierarchy nh
 on nh.nuts_3=pm.nuts3_code
 where
 nh.nuts_2='ITI1' and p.framework_program in ('H2020','FP7')
 group by
 p.start_year
) as q1
join
(
 select
 p.start_year as year, sum(p.ec_max_contribution) as total_funding
 from
 unics_cordis.projects p
 where
 p.framework_program in ('H2020','FP7')
 group by
 p.start_year
) as q2
on q1.year=q2.year;

Query UC2-Q2:
select
 inst.name as participant,
 aty.description as activity_type,
 count(distinct p.unics_id) as num_projects,
 sum(pm.ec_contribution) as funding_received
from
 unics_cordis.projects p
 join
 unics_cordis.project_members pm
 on pm.project=p.unics_id
 join
 unics_cordis.nuts_hierarchy nh

 D2.1 Requirements and use case specification

Page 85 of 89

 on nh.nuts_3=pm.nuts3_code
 join
 unics_common.institutions inst
 on inst.unics_id=pm.institution_id
 join
 unics_cordis.activity_types aty
 on aty.code=pm.activity_type
where
 nh.nuts_2='ITI1'
 and p.framework_program='H2020'
group by
 inst.name, aty.description;

Query UC2-Q3:
select
 inst.name as projec_member,
 etu.description as nuts2,
 p.start_year as year,
 string_agg(prog.title, ' | ') as programmes
from
 unics_cordis.projects p
 join
 unics_cordis.project_members pm
 on pm.project=p.unics_id
 join
 unics_cordis.nuts_hierarchy nh
 on nh.nuts_3=pm.nuts3_code
 join
 unics_cordis.eu_territorial_units etu
 on etu.nuts_code=nh.nuts_2
 join
 unics_cordis.project_programmes pp
 on pp.project=p.unics_id
 join
 unics_cordis.programmes prog
 on prog.code=pp.programme
 join
 unics_common.institutions inst
 on inst.unics_id=pm.institution_id
where
 (nh.nuts_2='ITI1'
 or exists(
 select 1
 from
 unics_cordis.project_members pm2
 join
 unics_cordis.nuts_hierarchy nh2
 on nh2.nuts_3=pm2.nuts3_code
 join
 unics_cordis.project_members pm3
 on pm3.project=pm2.project and
pm3.institution_id!=pm2.institution_id
 join
 unics_cordis.nuts_hierarchy nh3
 on nh3.nuts_3=pm3.nuts3_code
 where
 pm2.institution_id=pm.institution_id
 and nh2.nuts_2!='ITI1' and nh3.nuts_2='ITI1'
))
 and p.framework_program in ('H2020','FP7')
group by

 D2.1 Requirements and use case specification

Page 86 of 89

 inst.name, etu.description, p.start_year;

Query UC2-Q4:
select
 p.start_year as year,
 rd.description as research_domain,
 cou.name as country,
 count(distinct p.unics_id) as num_erc_projects
from
 unics_cordis.projects p
 join
 unics_cordis.erc_calls ercc
 on ercc.ec_call=p.ec_call
 join
 unics_cordis.project_erc_panels p_p
 on p_p.project=p.unics_id
 join
 unics_cordis.erc_panels pnl
 on pnl.code=p_p.panel
 join
 unics_cordis.erc_research_domains rd
 on rd.code=pnl.part_of
 join
 unics_cordis.project_members pm
 on pm.project=p.unics_id
 join
 unics_common.countries cou
 on cou.alpha_2=pm.country
where
 p.framework_program in ('H2020')
 and pm.country in ('ES','PT')
group by
 p.start_year, rd.description, cou.name;

Query UC2-Q5:
select
 sq2.partner_id,
 sq2.partner_name,
 sq2.partner_nationality,
 sq2.num_projects
from (
 select
 sq.*,
 row_number() over(order by sq.num_projects desc, sq.partner_name
asc) as rnk
 from (
 select
 q.partner_id, q.partner_name, q.partner_nationality,
 count(*) as num_projects
 from
 (
 select distinct
 partner_inst.unics_id as partner_id,
 partner_inst.name as partner_name,
 case
 when nh2.nuts_2='ITI1' then 'Toscana'
 when partner.country='IT' then 'Italian'
 else 'Non-Italian'
 end as partner_nationality,

 D2.1 Requirements and use case specification

Page 87 of 89

 p.unics_id as project_id
 from
 unics_cordis.project_members pm
 join
 unics_cordis.nuts_hierarchy nh
 on nh.nuts_3=pm.nuts3_code
 join
 unics_cordis.projects p
 on p.unics_id=pm.project
 join
 unics_cordis.project_members partner
 on partner.project=pm.project and
 partner.institution_id!=pm.institution_id
 join
 unics_cordis.nuts_hierarchy nh2
 on nh2.nuts_3=partner.nuts3_code
 join
 unics_common.institutions partner_inst
 on partner_inst.unics_id=partner.institution_id
 where
 pm.activity_type='PRC'
 and nh.nuts_2='ITI1'
 and p.framework_program in ('H2020','FP7')
) as q
 group by
 q.partner_id, q.partner_name, q.partner_nationality
) as sq
) as sq2
where sq2.rnk<=100;

UC3: Astrophysics

Query UC3-Q1:
select TOP 100 objID, ra, dec
from PhotoPrimary
where ra > 185 and ra < 185.1 and dec > 15 and dec < 15.1

Query UC3-Q2:
select top 100 g.objID, gn.distance
from Galaxy AS g
join dbo.fGetNearbyObjEq(185.,-0.5, 1) as gn
 on g.objID = gn.objID
order by distance

Query UC3-Q3:
select top 10 p.objid, p.ra, p.dec, p.u, p.g, p.r, p.i, p.z,
 s.class, s.z
from PhotoObj as p
join SpecObj as s on s.bestobjid = p.objid
where p.u between 0 and 15 and s.class = ‘star’

Query UC3-Q4:
select top 100 u, g, r, i, z from Galaxy

 D2.1 Requirements and use case specification

Page 88 of 89

where (htmid*37 & 0x000000000000FFFF) < (650 * 1)

Query UC3-Q5:
select top 100 g.objid, zns.nvote, zns.p_el as elliptical,
 zns.p_cw as spiralclock, zns.p_acw as spiralanticlock,
 zns.p_edge as edgeon, zns.p_dk as dontknow,
 zns.p_mg as merger
from Galaxy as g join ZooNoSpec as zns on g.objid = zns.objid
where g.clean=1 and zns.nvote >= 10 and zns.p_cw > 0.8

UC1: Cancer Biomarker Research

Query UC1-Q1:
select distinct ens.ensembl_gene_id, ens.gene_symbol
from oncomx.healthy_expression as he join xref_gene_ensembl as ens on
he.ensembl_gene_id = ens.ensembl_gene_id;

Query UC1-Q2:
select distinct a.name , a.id
from (healthy_expression as c join stage as st on st.id=
c.uberon_developmental_id) join anatomical_entity as a on a.id =
c.uberon_anatomical_id
where
st.name like '%young%' and
st.name like '%adult%'

Query UC1-Q3:
select distinct anat.id, anat.name from
healthy_expression as he join
xref_gene_ensembl as xref on he.ensembl_gene_id = xref.ensembl_gene_id join
anatomical_entity as anat on he.uberon_anatomical_id = anat.id
where
xref.gene_symbol="apoc1"

Query UC1-Q4:
select anat.name from
healthy_expression as he join
xref_gene_ensembl as xref on he.ensembl_gene_id = xref.ensembl_gene_id join
anatomical_entity as anat on he.uberon_anatomical_id = anat.id join
stage as st on st.id = he.uberon_developmental_id join species as s on
xref.speciesId = s.speciesId
where
xref.gene_symbol="apoc1" and
s.speciesCommonName = "human"
group by anat.name order by max(expression_score) desc limit 10

Query UC1-Q5:

 D2.1 Requirements and use case specification

Page 89 of 89

select distinct a.name as Tissue, s.name as Stage, he.expression_score as
Score , sp.speciesCommonName from healthy_expression as he join stage as s
on he.uberon_developmental_id = s.id JOIN xref_gene_ensembl AS g ON
g.ensembl_gene_id = he.ensembl_gene_id join anatomical_entity as a on
he.uberon_anatomical_id = a.id join species as sp on g.speciesId =
sp.speciesId
where g.gene_symbol = 'TP53'

Query UC1-Q6:
select distinct d.name from differential_expression as de join project_study
as ps on ps.study_id = de.study_id join
disease as d on d.id = ps.doid
where de.gene_symbol ='TP53'
and de.pvalue < 0.01

