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ABSTRACT 

Bgee is a database to retrieve and compare gene expression patterns in multiple animal species, 

produced by integrating multiple data types (RNA-Seq, Affymetrix, in situ hybridization, and EST 

data). It is based exclusively on curated healthy wild-type expression data (e.g., no gene knock-out, 

no treatment, no disease), to provide a comparable reference of normal gene expression. Curation 
includes very large datasets such as GTEx (re-annotation of samples as "healthy" or not) as well as 

many small ones. Data are integrated and made comparable between species thanks to consistent 

data annotation and processing, and to calls of presence/absence of expression, along with 

expression scores. As a result, Bgee is capable of detecting the conditions of expression of any single 
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gene, accommodating any data type and species. Bgee provides several tools for analyses, allowing, 

e.g., automated comparisons of gene expression patterns within and between species, retrieval of the 

prefered conditions of expression of any gene, or enrichment analyses of conditions with expression 

of sets of genes. Bgee release 14.1 includes 29 animal species, and is available at https://bgee.org/ 
and through its Bioconductor R package BgeeDB. 

INTRODUCTION 

Gene expression is central to the relation between genes or genomes and their function. It mediates 
or indicates the involvement of genes in functions, pathways, pathologies, differences between 

individuals, species, or genes. Many of the features which make expression so interesting also 

complicate its bioinformatics analysis, especially for multicellular organisms such as animals. While 

databases of reference genomes, providing standardized annotations and comparative frameworks 

within and between species, are well established(1–3), this is not the case for expression data. Both 

the concept of a "reference expression" for a species, and comparisons, are complicated by the need 

to define comparable samples and conditions(4). 

There are a few datasets which can play a role close to that of a reference expression pattern. Such 

“atlases” cover typically many anatomical structures (tissues or organs), and are often used to present 

expression in gene-centric databases, such as NCBI Gene(5). Gene presents by default expression 

from the HPA set(6) for human genes, with the option of switching to another of three RNA-seq 

atlases, covering 6 to 27 tissues. Because they are presented separately, it can be difficult to come to 

a conclusion concerning the expression pattern of a gene. For example, human insulin (NCBI Gene 
ID: 3630) shows very pancreas-specific expression from HPA, but the other proposed atlases lack 

pancreas samples, and show top expression in the prostate, the spleen, or the stomach. Probably the 

most complete atlas so far is GTEx(7). While atlases are valuable, they are dispersed in different 

databases, do not have common standards of annotation or quality-control, provide differently 

processed values, and cover different limited subsets of anatomy and conditions. 

There exist databases which specialize in providing expression pattern descriptions(8). The 

Expression Atlas(9) presents curated and processed expression data from a diversity of species and 

sources. As of May 2020, it includes 3,942 studies from 65 species, of which 214 are annotated as 

“baseline”, and are used to present an expression pattern of each gene. Expression is presented per 

experiment. Tissues(10) presents expression patterns derived from UniProtKB annotations, selected 

atlases, and text mining. The focus is on confidence in expression presence rather than levels of 

expression. Data from different techniques is presented separately. An interesting feature is that 
tissues are ranked within each evidence type, allowing the most important features of a complex 

expression pattern to emerge. Thus, for human insulin, the pancreas is one of two tissues from 

UniProtKB and Pancreatic beta cell is the top tissue from text mining. Finally, Model Organism 

Databases (MODs)(11)(12) provide integration of many datasets for a given species (or a targeted set 

of species). They integrate many small scale experiments such as in situ hybridization, thanks to 
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curation and the pioneering use of ontologies. They do not cover species outside of a small core of 

model organisms, and include expression data both from mutant strains and from wild-type. 

We have developed the Bgee database to answer questions about gene expression while avoiding 

limitations due to the separation of data sets and species. We notably provide an integrated reference 

of gene expression patterns in animals. We capture conditions of gene expression, i.e., the biological 

parameters for which a gene is expressed. Conditions are combinations of sample features, which 

together are expected to define an expression state. As of Bgee 14, we capture conditions as unique 

combinations of species, anatomical structure, developmental stage, sex and strain (sex and strain 

are not yet accessible to users in all views or tools). The data produced by Bgee allow: i) to answer 
the questions “where and when this gene is expressed?”, and “what are the genes expressed in this 

condition?”; ii) to identify the conditions most relevant to the expression of each gene; iii) to study 

gene expression evolution, by comparing expression patterns between species. Bgee provides a 

consistent vision over all species, and integrates data over a large number of atlases and small-scale 

datasets. These currently include 29 species and four major types of expression experimental data. 

MATERIALS AND METHODS: DATA CURATION AND PROCESSING 

Pipeline overview 

We collect expression data from different sources, depending on their data type. Hereafter we define 

“data type” to cover data resulting from different types of assays for gene expression. We curate these 

data to retain only samples from healthy wild-type individuals. We annotate them to anatomical and 

life stage ontologies, along with information of population/strain and sex. We perform quality controls 
to remove low-quality and duplicated samples. We process these data to produce present/absent 

expression calls, along with expression level information, represented by our expression ranks and 

expression scores. We propagate these calls along the anatomical and life stage ontologies, to allow 

the integration of data generated with various granularities. We provide an overview of this pipeline in 

Figure 1, and detail some aspects in the following subsections; see the Supplementary Methods and 

the online documentation for further details. 

 

Ontologies and genome annotations are only updated for each major release (e.g., Bgee 13 to 14), 

while expression data can be updated at minor releases (e.g. Bgee 14.0 to 14.1). Thus all expression 

data presented here concern Bgee 14.1 specifically, while ontology and genome annotations concern 
Bgee 14, both 14.0 and 14.1. 

Species information: taxonomy, genomes, gene orthology 

We annotate species information using the NCBI taxonomy database(13), and integrate the taxonomy 

for species present in Bgee. We retrieve gene models for each species in Bgee from Ensembl(3) 

(Ensembl 84 for Bgee 14) and Ensembl Metazoa(2) (release 30 for Bgee 14) using the Perl Ensembl 
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API. We also retrieve cross-references to other databases, gene biotypes, and annotations to Gene 

Ontology(14)(15) terms, and gene orthology information from OMA(16), although our web and R 

views and tools do not make use of GO annotations nor of orthology as of Bgee 14.1. 

Uberon integration 

To describe the anatomy of diverse animals, we use the Uberon ontology(17). Its integration into 

Bgee requires processing, described in Supplementary Methods. Briefly, we refine taxon constraints; 

we simplify Uberon to keep only the knowledge needed for Bgee, and simplify it for an easier 

browsing; we remove any cycles; and we correct mappings between model organism databases 

(MODs) and Uberon. 

Developmental stage integration 

Each species in Bgee has a developmental stage ontology, available in the obophenotype 

developmental stage ontology repository. We have developed all of the species-specific ontologies in 
this repository, except those from Model Organism Databases (EMAPA for mouse(18); FBdv for 

fly(19); ZFA for zebrafish(20); XAO for Xenopus(21, 22); WBls(23) for worm). We produce a 

composite stage ontology merging all of these species-specific ontologies, that we can insert into 

Bgee. Having one common multi-species ontology, with high level terms merged between species 

(e.g., “gastrula”), allows us to propagate expression data to comparable stages in different species, 

and thus take development into account when automatically comparing expression patterns. The 

merge is performed by the Uberon maintainers. 

We describe our strategy for insertion into Bgee in detail in the Supplementary Methods. Briefly, we 

merge terms from species-specific ontologies into the structure of Uberon; we order stages using the 

relations “preceded_by” or “immediately_preceded_by”; and we ensure that each stage has at most 

one parent by a part_of relation. Finally, we transform the merged developmental stage ontology into 

a nested set model for integration into Bgee. 

Curation of expression data 

Our curation steps have the aim of selecting data: i) produced from healthy wild-type animals in 

normal conditions; ii) that are of high quality; iii) that are non-redundant. Because the amount of data 

available in public repositories is large, we can be stringent regarding our criteria to accept data for 

inclusion. 

Data sources 

All data sources are detailed in Table 1. For SRA or GEO studies for which the corresponding 

publication is missing at time of curation by Bgee, we determine the publication, and report missing 

PMIDs to GEO. We use the information from these publications, as well as those which are already 

linked, for precise annotation of samples to anatomy, stage, sex and/or strain. For example the 
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SRP075519 study contains six RNA-seq libraries, with tissue information reported as 'muscle', while 

the related paper(24) reports that “RNA-Seq analysis was performed on six piglets representing two 

breeds: Duroc and Ronghcang (three animals of each breed). RNA was extracted from the 

longissimus dorsi of each individual.” We can thus annotate the libraries to the relevant term 
UBERON:0001401 “longissimus thoracis muscle”, and we can also annotate each library to the 

corresponding breed (here 'Duroc' or 'Ronghcang').  

Healthy wild-type samples in normal conditions 

For inclusion into Bgee, we reject samples from animals with abnormal genetic backgrounds (e.g., 

project SRX2751118, nono-/- mice), or subject to diseases, to gene knockouts, or to treatments not 

expected in the wild (e.g., irradiated sample DRX012402). We manually review the information about 

each sample before inclusion (see Supplementary Material for our criteria for inclusion). While we aim 

at being stringent regarding the quality of the data we integrate, we also need our data to reflect the 

genetic diversity of wild-type animals, or the various expected conditions encountered in the wild. 

For in situ hybridization data that we retrieve from MODs, we coordinate with developers of these 

resources to find the appropriate parameters to retrieve only wild-type healthy samples in normal 

conditions. 

Removal of hidden redundancies 

During our quality control procedure, we have identified duplicated content in the GEO and 

ArrayExpress databases (identical arrays reused in different experiments, and submitted as distinct), 

affecting about 14% of our Affymetrix data(40). We have thus created a method to discard these 

duplicated samples, as well as to avoid this problem appearing in our RNA-Seq dataset. This allows 

Bgee, despite the use of potentially overlapping multiple datasets, to provide and use a clean 
reference of unique samples for downstream analyses. 

Curation of GTEx dataset 

We have curated the GTEx human dataset phs000424.v6.p1(7). We apply a stringent re-annotation 
process to the GTEx data to retain only healthy and non-contaminated samples, using the information 

available under restricted-access. For instance, we reject all samples for 31% of subjects, deemed 

globally unhealthy from the pathology report (e.g., drug abuse, diabetes, BMI > 35), as well as specific 

samples from another 28% of subjects who had local pathologies (e.g., brain from Alzheimer 

patients). We also reject samples with contamination from other tissues according to the pathologist 

report. In total, we have kept only 6008 of 11983 samples (50%); these represent a high quality 

subset of GTEx, restricted to only healthy and non-contaminated samples. We re-annotate some 
GTEx samples to Uberon ontology, according to the original sampling sites. For instance, we map 

GTEx samples ‘Minor Salivary Gland - Inner surface of lower lip’ to UBERON:0001830 minor salivary 

gland, while GTEx reports on UBERON:0006330 anterior lingual gland. Note that both lip inner 

surface and tongue have minor salivary glands. The precise criteria for our curation of GTEx can be 
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found in Sup. Material. More information to use these data is available at 

https://bgee.org/?page=doc&action=data_sets, and is also provided in Sup. Material. 

Annotation of expression data 

We capture information about the anatomical localization of samples, their developmental and life 
stage, their sex, and their strain or ethnicity. We either manually capture this information using 

ontologies and controlled vocabularies (for Affymetrix, RNA-Seq, and EST data), or we map existing 

annotations provided by MODs to these ontologies and vocabularies (for all in situ hybridization data, 

and for some Affymetrix and RNA-Seq data annotations provided by Wormbase for C. elegans). For 

Affymetrix and RNA-Seq data, we also capture whether replicates are technical or biological. 

In addition to Uberon22 and developmental stage ontologies described above, sex is annotated to a 

simple controlled vocabulary, and we maintain a naive controlled vocabulary of strains or breeds, 

based on the UniProt 'strains.txt' file (https://www.uniprot.org/docs/strains) and completed with 

strain/breed names found in the literature, or from species specific resources (e.g. 

https://www.gov.uk/guidance/official-cattle-breeds-and-codes). We standardize strain information 

provided in free-text format, notably to remove most duplicates, resulting in 422 different strain and 

ethnicity terms used in Bgee 14.1. If strain or sex information are missing, they are mapped to one of 

the following: “NA”, not available from source information; “not annotated”, information not captured by 
Bgee; “confidential_restricted_data”, information cannot be disclosed publicly (e.g., GTEx). 

Processing of expression data 

We present key processing steps and software very briefly here. Details of expression data download 

and processing are in Supplementary Methods, and in the online code documentation. For RNA-seq, 

we use Ensembl and Ensembl metazoa for sequences and annotations of coding and non coding 

genes. We use Kallisto(41) to generate pseudo-counts per transcript, which are then summed for 

each gene. All further analysis and reporting is done at the gene level as of Bgee 14. For Affymetrix 

microarray data, we use CEL files when they are available, using IQRray(42) for quality control and 
gcRMA(43) for normalization. Otherwise we use MAS5(44) processed files. Mapping of probesets to 

genes is recovered from Ensembl. For ESTs, we simply mapped by BLAST(45) to UniGene clusters 

then to Ensembl genes, and counted the number of ESTs per gene. 

Integration of in situ hybridization data from Model Organism Databases 

We retrieve in situ hybridization data from the relevant MODs (Table 1), using InterMine(46) whenever 

possible. We filter out the data from animals with abnormal genetic backgrounds, e.g., animals with 

transgenes or knockout. We remap species-specific terms from the MOD ontology or controlled 
vocabulary to Uberon. When needed, we transform annotations to separate anatomical localization 

and developmental stage. We provide details of this integration, and of specific issues and their 

solutions, in Supplementary Methods. 
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Calls of presence/absence of expression 

Bgee provides calls of presence or absence of expression for unique combinations of a gene in a 

condition. As of Bgee 14.1, a condition is defined by 5 pieces of information: an anatomical entity, a 

life stage, a sex, a strain or ethnicity, and a species. 

Calls produced from RNA-Seq data 

We use a new method to estimate for each RNA-Seq library independently the TPM threshold to 

consider a gene as actively transcribed (Julien Roux, Marta Rosikiewicz, Julien Wollbrett, Sara S. 
Fonseca Costa, Marc Robinson-Rechavi, Frederic B. Bastian; in preparation). While this method will 

be described elsewhere, the documentation of our pipeline describing its use in Bgee is available at 

https://github.com/BgeeDB/bgee_pipeline/tree/master/pipeline/RNA_Seq (archived version for release 

Bgee 14.1: https://github.com/BgeeDB/bgee_pipeline/tree/v14.1/pipeline/RNA_Seq). Briefly, we use 

all RNA-seq data from a species to identify a stringent set of intergenic regions, then use these 

regions to define the background level of read mapping per library. Then, we call genes as expressed 

when their level of mapped reads is significantly higher than this background, and as not expressed 
otherwise. As of Bgee 14.1, RNA-Seq calls are all considered of high quality. 

Calls produced from Affymetrix data 

When only the MAS5 files of an analysis are available, we use the flags provided by the MAS5 
software(47). Although MAS5 classification is efficient(48), the estimation of the background signal 

can be biased depending on probe sequence affinity(49). For this reason, we use preferentially CEL 

files when available to produce present/absent calls, and, when not available, we consider all calls 

produced from MAS5 files as low quality. MAS5 “present” and “marginal” flags correspond in Bgee to 

a low quality present call; “absent” flag to a low quality absent call. For CEL data, we use the gcRMA 

algorithm(43) to normalize the signal taking into account probe sequences, and use a subset of 

weakly expressed probesets for estimating the background, as described in (49). We then apply a 

Wilcoxon test to compare the normalized signal of the probesets with the background signal, as 
implemented in the ‘mas5calls’ function of the bioconductor package ‘affy’(48): High quality present 

call corresponds to a p-value threshold of < 0.03 (corresponding to a FDR of ≈5%, see Schuster et 

al.(49)), low quality present call to a p-value >= 0.03 and <= 0.12, and high quality absent call to a p-

value > 0.12 (< 0.12 corresponds to a FDR ≈ 10%). 

We then exclude all probesets that are never seen as MAS5 “present” or CEL high quality present 
over the whole dataset. Because a same gene can be covered by several probesets, we reconcile this 

information to produce one call per gene and per chip, by retaining the best probeset signal, in this 

order: high quality present, low quality present, high quality absent, low quality absent. 
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Calls produced from EST data 

Based on the number of ESTs mapped to a gene for which the 95% confidence interval of the EST 
count excludes 0 (50), we call presence of expression of high quality when an experiment has at least 

7 ESTs mapped to a gene, and of low quality from 1 to 6 ESTs. We do not produce calls of absence 

of expression from EST data because of the low sampling. 

Remapping to more generalized conditions 

We annotate and retrieve expression data with as much granularity as possible. But such a granularity 

can hamper call integration and comparison. Thus, we remap the granular annotations of the data to 

more generalized conditions. For developmental stages, we have created in developmental stage 

ontologies a subset named “granular_stage”. For instance, HsapDv:0000150 “56-year-old human 

stage” would be automatically remapped to HsapDv:0000092 “human middle aged stage”. The 

highest granularity possible is still available when retrieving our annotated and processed expression 
values. 

Call propagation 

After producing these calls from multiple techniques and experiments, we propagate them along the 

graph of conditions (see Figure 2 for an overview). We produce the graph of conditions by: i) using the 

graph of anatomical entities (Uberon ontology) from is_a (subClassOf in OWL) and part_of relations 

(an object property in OWL); ii) using the graph of developmental stages (developmental stage 

ontology) from part_of relations; iii) adding a root parent to all sex terms by is_a relation; iv) adding a 

root “wild type” parent to all strain terms by is_a relation (in the context of Bgee, all strains have Wild-

Type as parent). 

We propagate calls of presence of expression along the graph of conditions to all parent conditions. 

The idea is that if a gene is expressed, e.g., in the midbrain, it is expressed in the brain, the parent 

structure. We propagate calls of absence of expression to direct anatomical sub-structures, keeping 

the same developmental stage, sex, and strain. We propagate only to direct anatomical sub-

structures, and not all sub-structures, because we consider that an experiment could miss the 

expression of a gene in a very small part of a larger anatomical entity. We do not propagate to child 
terms for stages, sexes, or strains. 

 

Integration to produce one global call and confidence level per gene - condition combination 

Multiple calls from multiple data types and assays can be produced for a given gene in a given 

condition, from direct observation or from propagation along the condition graph. We integrate all 

these individual calls to produce one global call of presence/absence of expression per gene - 

condition, along with a confidence level. 
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Global calls of absence of expression are reported when all experiments consistently report an 

absence of expression for a gene in a condition, with no conflicting presence of expression reported in 

the condition itself, or any sub-condition. Otherwise, a global call of presence of expression is 

reported: presence of expression always “wins” over absence of expression, whatever the quality 
level and number of experiments producing the call of presence of expression, as of Bgee 14. This 

means that Bgee is very stringent when reporting absence of expression. 

We follow the principles of the Confidence Information Ontology (CIO)(39), and translate them into 

three confidence levels. After call propagation and reconciliation of presence/absence calls, we assign 

gold confidence level to global calls supported by at least two different experiments with a high quality 
call; silver to global calls supported by either only one experiment with a high quality call, or at least 

two different experiments with a low quality call; and bronze level to global calls supported by only one 

experiment with a low quality call. Because of call propagation, we also consider in support of a global 

call the experiments which contribute to calls in sub-conditions (for calls of presence of expression) or 

in direct parent anatomical entities (for calls of absence of expression). 

Expression ranks and expression scores 

We also provide a quantitative ranking of the conditions where a gene is expressed, also integrated 

over experiments and data types. Briefly, these ranks are computed in each condition relative to other 
genes, which then allows to compare conditions for each gene (after normalization). The assumption 

is that if a gene has a lower rank (i.e., higher relative expression) in some conditions than in others, 

then its expression is more important in these conditions. To compute expression ranks: 1) we 

compute ranks using different methods per data type; 2) we normalize ranks over all genes, 

conditions and data types for each species; 3) we compute a global weighted mean rank for each 

gene in each condition over all data types considered. We also transform these ranks into expression 

scores, more easily understandable by users: higher gene expression translates into lower rank but 

higher expression score, from 0 to 100.  

We present briefly the principle of our rank computation. Detailed methods are available in 

Supplementary Methods and online code documentation. 

Rank computation for each data type 

For RNA-Seq, we compute fractional ranks of genes in each library, based on their TPM value. Then 

for each gene and each condition with RNA-Seq data in the condition itself, we compute a weighted 

mean of the gene ranks over relevant libraries. We weigh the mean by the number of distinct ranks in 

each library, under the assumption that libraries with a higher number of distinct ranks have a higher 
power for ranking genes (see eq. 1).  

𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑀𝑒𝑎𝑛𝐹𝑟𝑎𝑐𝑡𝑅𝑎𝑛𝑘01213,56278,79:9;<=1>?29@1A 	

= 	
∑ (𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡𝑅𝑎𝑛𝑘𝐶𝑜𝑢𝑛𝑡56278,JKL?9?<M ×	𝑓𝑟𝑎𝑐𝑡𝑅𝑎𝑛𝑘01213,56278,JKL?9?<M)
J
Q

∑ 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡𝑅𝑎𝑛𝑘𝐶𝑜𝑢𝑛𝑡56278,JKL?9?<M
J
Q
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(eq. 1)  

where 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡𝑅𝑎𝑛𝑘𝐶𝑜𝑢𝑛𝑡 is the count of distinct ranks in a library, and 𝑓𝑟𝑎𝑐𝑡𝑅𝑎𝑛𝑘 the fractional rank 

of a gene in a library.  

Similarly, for Affymetrix we compute fractional ranks for each chip based on signal intensity, 

considering the highest signal intensity of the probesets for each gene. We normalize the fractional 

ranks between chip types, to correct for different genomic coverages due to different probeset 

designs. First, for each chip type, we compute its max rank over all conditions. Then, we normalize 

ranks of each chip, based on the max rank of this chip type, as compared to the max of the max ranks 

of other chip types represented in the same condition (see eq. 2; note that we do not normalize based 

on the max rank in a given condition, but on the max rank of the chip types represented in the 
condition). We then compute the weighted mean of the normalized ranks per gene and condition, 

weighting by the number of distinct ranks in each chip (see eq. 3).  

𝑛𝑜𝑟𝑚𝐹𝑟𝑎𝑐𝑡𝑅𝑎𝑛𝑘01213,56278,5SK=T = 𝑓𝑟𝑎𝑐𝑡𝑅𝑎𝑛𝑘01213,56278,5SK=T × (1 +
𝑚𝑎𝑥𝐶ℎ𝑖𝑝𝑇𝑦𝑝𝑒56278

𝑚𝑎𝑥𝐶ℎ𝑖𝑝𝑇𝑦𝑝𝑒	5SK=;<=18[\]T
) ÷ 2 

(eq. 2)  

where  𝑓𝑟𝑎𝑐𝑡𝑅𝑎𝑛𝑘 is the fractional rank of a gene in a chip, 𝑚𝑎𝑥𝐶ℎ𝑖𝑝𝑇𝑦𝑝𝑒5SK=;<=1` =

𝑚𝑎𝑥a𝑓𝑟𝑎𝑐𝑡𝑅𝑎𝑛𝑘0121b,5627b,5SK=b,5SK=;<=1`, . . . , 𝑓𝑟𝑎𝑐𝑡𝑅𝑎𝑛𝑘0121T,5627d,5SK=8,5SK=;<=1`e (the max of the chip 

type over all conditions) and  𝑚𝑎𝑥𝐶ℎ𝑖𝑝𝑇𝑦𝑝𝑒56278 is 

𝑚𝑎𝑥a𝑚𝑎𝑥𝐶ℎ𝑖𝑝𝑇𝑦𝑝𝑒56278,5SK=;<=1b, . . . ,𝑚𝑎𝑥𝐶ℎ𝑖𝑝𝑇𝑦𝑝𝑒56278,5SK=;<=1`e (the max of the chip types 

represented in the condition) 

𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑀𝑒𝑎𝑛𝑁𝑜𝑟𝑚𝐹𝑟𝑎𝑐𝑡𝑅𝑎𝑛𝑘01213,56278,79:9;<=1>9gg<h1:?Ki 	

= 	
∑ (𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡𝑅𝑎𝑛𝑘𝐶𝑜𝑢𝑛𝑡56278,5SK=M × 	𝑛𝑜𝑟𝑚𝐹𝑟𝑎𝑐𝑡𝑅𝑎𝑛𝑘01213,56278,5SK=M)
J
Q

∑ 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡𝑅𝑎𝑛𝑘𝐶𝑜𝑢𝑛𝑡56278,5SK=M
J
Q

 

(eq. 3) 

Since in situ hybridization data are not quantitative, we make the assumption that the more often an 

expression observation is reported, the more biologically important this expression is likely to be. Thus 

the rank is computed on the number of calls and their confidence pulling together all data available in 

each condition, using a dense ranking instead of a fractional ranking. We thus directly obtain a rank 

for each gene and condition, without averaging values as for RNA-Seq and Affymetrix. 

While EST data are in principle quantitative, their very low coverage leads us to treat them similarly to 

in situ hybridization data, summing EST counts from all libraries in each condition, and using a dense 

ranking. 
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Integration over all data types and experiments 

Different experiments and techniques might have different power and resolution at ranking genes in a 
same condition. For instance, some in situ hybridization data might allow to rank 5 genes in a 

condition; while RNA-Seq data in the same condition might allow to rank 30,000 genes. To correct for 

this, we normalize the mean or dense ranks for each gene in each condition and for each data type, 

based on the max rank for this data type in this condition, as compared to the max rank over all 

conditions and data types, independently for each species (see eq. 4). With the information 

normalized per data type we compute a global weighted mean rank for each gene and condition. All 

data types are used for ranks shown on the Gene Page, although it is possible to use only some if 
needed. This mean is computed by using the normalized mean ranks or normalized dense ranks for a 

gene in a condition, from each data type considered, and as weights, the sum of distinct rank counts 

for RNA-Seq and Affymetrix data, the max rank in each condition for EST and in situ hybridization 

data (see eq. 5). 

𝑛𝑜𝑟𝑚𝑅𝑎𝑛𝑘01213,56278,79:9;<=1j
= 𝑟𝑎𝑛𝑘01213,56278,79:9;<=1j × (1	

+	
𝑚𝑎𝑥 k𝑟𝑎𝑛𝑘0121b,5627b,79:9;<=1b, . . . , 𝑟𝑎𝑛𝑘0121`,5627l,79:9;<=1mn

𝑚𝑎𝑥a𝑟𝑎𝑛𝑘0121b,56278,79:9;<=1j, . . . , 𝑟𝑎𝑛𝑘0121`,56278,79:9;<=1je
) ÷ 2 

(eq. 4) 

𝑚𝑒𝑎𝑛𝑁𝑜𝑟𝑚𝑅𝑎𝑛𝑘01213,56278

=
𝐴01213,56278 × 𝐵01213,56278 + 𝐶01213,56278 × 𝐷01213,56278 + 𝐸01213,56278 × 𝐹01213,56278 + 𝐺01213,56278 × 𝐻01213,56278

𝐴01213,56278 + 𝐶01213,56278 + 𝐸01213,56278 + 𝐺01213,56278
 

(eq. 5)  

where 𝐴01213,56278 is the sum of the counts of distinct ranks in the RNA-Seq libraries in 𝑐𝑜𝑛𝑑5 studying 

𝑔𝑒𝑛𝑒0, 0 if there is no RNA-Seq data for this gene in this condition; 𝐵01213,56278is the mean normalized 

rank of 𝑔𝑒𝑛𝑒0over the RNA-Seq libraries in 𝑐𝑜𝑛𝑑5with data for 𝑔𝑒𝑛𝑒0;  𝐶01213,56278 is the sum of the 

counts of distinct ranks in the Affymetrix chips in 𝑐𝑜𝑛𝑑5 studying 𝑔𝑒𝑛𝑒0, 0 if there is no Affymetrix data 

for this gene in this condition; 𝐷01213,56278is the mean normalized rank of 𝑔𝑒𝑛𝑒0over the Affymetrix 

chips in 𝑐𝑜𝑛𝑑5with data for 𝑔𝑒𝑛𝑒0; 𝐸01213,56278 is the max dense rank from in situ hybridization data in 

𝑐𝑜𝑛𝑑5over all genes, 0 if there is no in situ hybridization data for 𝑔𝑒𝑛𝑒0 in this condition; 𝐹01213,56278is 

the normalized dense rank of 𝑔𝑒𝑛𝑒0from in situ hybridization data in 𝑐𝑜𝑛𝑑5; 𝐺01213,56278 is the max 

dense rank from EST data in 𝑐𝑜𝑛𝑑5over all genes, 0 if there is no EST data for 𝑔𝑒𝑛𝑒0 in this condition; 

𝐻01213,56278is the normalized dense rank of 𝑔𝑒𝑛𝑒0from EST data in 𝑐𝑜𝑛𝑑5; 

 

We transform global weighted mean ranks into expression scores. To compute the expression score 

of a gene in a condition, we retrieve the max rank over all conditions and data types considered, for 
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this species; and the global weighted mean rank for a gene in a condition, computed over all data 

types considered and data available, as described above. The expression score is computed 

according to eq. 6. 

𝑠𝑐𝑜𝑟𝑒01213,56278	 = (𝑚𝑎𝑥 k𝑟𝑎𝑛𝑘0121b,5627b,…,0121`,5627ln	

+ 	1	–	𝑟𝑎𝑛𝑘01213,56278	) 	×
100

𝑚𝑎𝑥 k𝑟𝑎𝑛𝑘0121b,5627b,…,0121`,5627ln
 

(eq. 6) 

RESULTS: USING THE BGEE RESOURCE 

We describe here: i) the data available in Bgee that we have produced; ii) the web interfaces to 

leverage these data for biological insights; iii) the resources to access Bgee data (annotated and 

processed expression values, calls of expression). 

Overview of Bgee 

One of the advantages of the integrative approach of Bgee is to obtain data for as many conditions as 

possible, with as much anatomical and developmental detail as possible. Moreover, new technologies 

do not require a new database, but allow integration with historical data.  

For developing Bgee, we have curated and reprocessed all expression data to the same standard, of 

high quality, non-redundant, healthy wild-type data. This is a first level of data integration. 

Bgee provides a single answer to the question “where and when is this gene expressed?”. For 

instance, for the insulin gene, both human and mouse insulin have in Bgee top expression in islets of 

Langerhans and more generally pancreas; in human the information is even more fine-grained, with 

top expression in the Beta cells. Users of this second level of integration (calls) are free to ignore the 

complexity of the underlying data, to concentrate on the biological signal of interest, while we also 

provide high quality processed data for downstream studies. 

Data provided by Bgee 

In this section we describe the Bgee release 14.1 datasets of: i) annotated and processed expression 
values; ii) calls of presence/absence of expression and expression ranks; iii) anatomical and 

developmental stage similarity information. All original data sources used to build Bgee release 14.1 

are in Table 1. All data are published under the Creative Commons Zero license (CC0). 

Annotated and processed expression values 

Bgee 14 includes 29 animal species. Anatomical localization is annotated to the multi-species 

anatomical ontology Uberon (17), and developmental stages to a multi-species ontology (Table S1), 

which integrates existing ontologies when available. Sex and strain are annotated with a basic 

controlled vocabulary, and species with the NCBI taxonomy(13). We have curated all data to retain 
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only healthy, wild-type data: no treatment, no gene knockout, etc. Since we have annotated and 

remapped all these data in a consistent framework using ontologies, and reprocessed all of them, it 

allows a complete integration of all data. Bgee thus allows users to retrieve a dataset of expression 

data consistently curated, annotated, and processed, usable in their own downstream analyses. 
Statistics about the data integrated per species are presented in Table 2.  

RNA-Seq data 

For RNA-Seq data, we have remapped all raw data to transcriptome to produce counts at the 
transcript level, then aggregated them per gene. These aggregated counts are used to compute 

FPKMs and TPMs per gene. We have notably re-curated the GTEx human dataset 

phs000424.v6.p1(7). Only 50% of samples were kept, to discard unhealthy or contaminated samples 

(see Table S1 for link to GTEx criteria), representing a high quality subset of GTEx. For each RNA-

Seq library, we provide detailed information, including annotations, library information, and relevant 

statistics (see online documentation). For each gene in each library, we provide several measures of 

expression level, and calls of presence/absence of expression (available in download TSV files). 

Affymetrix data 

For Affymetrix data, we have processed raw CEL files when available, or used MAS5 processed files 

when raw CEL files were not available. Similar to RNA-Seq libraries, for each Affymetrix chip, we 

provide annotations, chip information, and relevant statistics. In Affymetrix, expression is measured 
per probeset rather than per gene; several probesets can map to one gene, and provide different 

measures. For each probeset in each chip, we provide the gene the probeset maps to, the signal 

intensity, and the call of presence/absence of expression (see online documentation) (available in 

download TSV files). 

In situ hybridization data 

We have retrieved in situ hybridization data from relevant Model Organism Databases (MODs; Table 

1). For each evidence, we do not store the original image, or paper figure, but we provide a link to the 

original data. For each evidence and each spot, meaning the report of an area with staining from 

expression of a gene, or lack of staining from absence of expression of a gene, we provide 

annotations, mapping to gene, call of presence/absence of expression and quality of the call for this 
spot. At present, these data are not available for direct download, but are used in integrated calls and 

scores. 

Expressed Sequence Tags 

Both EST databases which we used as data sources (Table 1) are now retired, thus we are no longer 

updating these data. For each EST library, we provide annotations. We provide the mapping between 

genes and ESTs per library. For each gene in each library, we provide the number of ESTs mapped 

to it, and the call of presence of expression. Despite the growth in other data, there are still conditions 
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where ESTs provide the only direct observation. For example, mouse insulin-1 has only EST data for 

pancreas at 1 week. Note that calls of absence of expression are not produced from EST data. At 

present, these data are not available for direct download, but are used in integrated calls and scores. 

Calls of presence/absence of expression and expression ranks 

Expression calls 

A call corresponds to a unique combination of a gene in a condition, with reported presence or 

absence of expression. In Bgee 14, only conditions combining species, anatomical entity, and life 

stage are available to users of our calls; information about sex and strain will be publicly available for 

calls in a future release. We produce calls for each evidence (e.g., RNA-Seq library, Affymetrix chip) 

integrated into Bgee. For continuous data types, we apply a threshold which depends on the data 

type: for Affymetrix a Wilcoxon test on the signal of the probesets against a subset of weakly 

expressed probesets(49); for RNA-seq, a library-specific threshold depending on the distribution of 
TPMs on intergenic sequences (Julien Roux, Marta Rosikiewicz, Julien Wollbrett, Sara S. Fonseca 

Costa, Marc Robinson-Rechavi, Frederic B. Bastian; in preparation); and for ESTs a threshold based 

on the number of tags(50). These calls can then be integrated over experiments and over data types. 

We have propagated these individual calls along a graph of conditions (see Materials and Methods). 

Then, we have integrated these individual calls from multiple experiments, propagated along the 
condition graph, to produce one global call of presence/absence of expression per gene - condition, 

associated to a confidence level(39). As a result, for each gene in each condition, Bgee provides one 

global call, the confidence level of the call (gold, silver, bronze), the number of experiments from each 

data type supporting the presence and absence of expression, and whether the call has been 

propagated or observed directly in the condition (available in TSV download files). 

Expression ranks and scores 

To compare expression between experiments in a quantitative manner, we rank genes in a condition 

based on their expression level. We have also integrated these ranks over all data types and 

experiments. The lower the rank score of a gene in a condition, the higher its expression. Because 

this is not very intuitive to users, we also compute an “expression score” for visualisation: the top 

expressed gene has a rank score of 1 and an expression score of 100, and the lowest expressed has 
the maximum rank and an expression score of 100/Max(ranks). Expression ranks can be retrieved per 

anatomical entity and developmental stage. 

Anatomical and developmental similarity 

We use the ontology of homology and related concepts(51) to capture the type of similarity between 

anatomical entities. These similarity annotations can be retrieved from GitHub (full link in Table S1), 

and will be described in detail elsewhere (Anne Niknejad, Marc Robinson-Rechavi, Frederic B. 

Bastian; unpublished). It should be emphasized that they are derived from primary literature (e.g., 
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paleontology, Evo-Devo), not from the expression data in Bgee; thus the anatomical homology 

annotations and the gene expression calls are independent. As of Bgee 14.1, we have integrated 

2,328 relations of homology, involving 1,845 anatomical entities. 

For development stages, we have merged all the developmental stage ontologies of species 

integrated in Bgee into one common multi-species ontology, within Uberon. Common general stages 

have been merged between species, and more precise species-specific stages are children of these 

general terms. For instance, the human-specific precise stage HsapDv:0000016 “Carnegie stage 09” 

is a child of the more general, multi-species term UBERON:0000111 “organogenesis stage”. While we 

could not map data to the exact equivalent of Carnegie stage 09 in all species, we could compare 
them at the more general organogenesis stage, thanks to propagation of calls to parent terms. This 

makes comparison with a developmental aspect possible. 

Web interface of Bgee 

The Bgee Gene page (Figure 3) provides for each gene the conditions where it is expressed, sorted 

by their expression rank. Primary sorting is on anatomical entities. 

The anatomical expression enrichment test TopAnat (Figure 3) uses a similar approach to Gene 

Ontology enrichment tests(52)(53), but genes are associated to the anatomical structures from 

Uberon by their expression calls, instead of to their functional classification (Roux J., Seppey M., 

Sanjeev K., Rech de Laval V., Moret P., Artimo P., Duvaud S., Ioannidis V., Stockinger H., Robinson-

Rechavi M., Bastian F.B.; unpublished). The algorithms from the package topGO(54) are available in 

TopAnat to account for the non-independence of anatomical structures, and avoid the over-

representation of less-informative top-level terms. As an example, we have used TopAnat to analyze 

a list of genes associated with autism and epilepsy in human(55). TopAnat returns a list of anatomical 
structures where expression of these genes is enriched relative to the background of all human genes 

with expression. These structures are almost all specific brain regions, including all brain regions 

known to be affected by autism(56): frontotemporal lobe (examples of TopAnat results part of this 

structure: UBERON:0002771 “middle temporal gyrus” and UBERON:0002810 “right frontal lobe”); 

frontoparietal cortex (UBERON:0001872 “parietal lobe” and UBERON:0001870 “frontal cortex”); 

amygdala (UBERON:0001876 “amygdala”); hippocampus (UBERON:0003881 “CA1 field of 

hippocampus”); basal ganglia (UBERON:0002038 “substantia nigra”, part of UBERON:0002420 

“basal ganglion”); and anterior cingulate cortex (UBERON:0009835 “anterior cingulate cortex”). Of 
note, TopAnat can be slow because of propagation of calls in the anatomical ontology, which is 

redone on the fly by the topGO package to allow decorrelation. TopAnat is available as a web-tool, 

and in the BgeeDB R package (see below). 

 

The Bgee website makes it possible to compare expression patterns between genes, within and 

between species. When genes in a single species are compared, Expression Comparison (see figure 

3) considers present/absent expression calls in anatomical entities (e.g., “lung” in human). When 
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genes from several species are compared, it considers calls in homologous anatomical entities (e.g., 

“lung - swim bladder” for comparing data in human and zebrafish(57–59)). For each of these entities, 

it then displays the genes from the user list that are either expressed, or not expressed, or have no 

data. It offers different sorting methods of these entities, by expression rank and by conservation of 
calls. 

For instance, when studying the conservation of expression of the brain specific genes SRRM4 in 

Tetrapoda, the top homologous anatomical entities, as of Bgee 14.1, when sorted by maximum 

expression conservation and minimum expression rank, are “forebrain”, “telencephalon”, and 

“cerebral hemisphere” 
(https://bgee.org/bgee14_1/?page=expression_comparison&data=34beddfc93bb7fbb440e757e6de24

d91fc0ce177). Relations of historical homology can also be queried directly through the homology 

retrieval tool (see figure 3). Thus they can be used for other applications than expression in Bgee, 

such as phenotypes. For instance, for comparing such anatomy-related data, a user may ask: “what 

is, in human, the comparable organ to the zebrafish ‘pharyngeal gill’?”. The homology retrieval tool will 

return the anatomical entity in human “parathyroid gland” 

(https://bgee.org/bgee14_1/?page=anat_similarities&species_list=9606&species_list=7955&ae_list=U

BERON%3A0000206). Indeed, the parathyroid gland and the pharyngeal gill likely derive from a 
common ancestral structure, present in the ancestor of Vertebrata, as they both regulate extracellular 

calcium levels, and the parathyroid gland is positioned within the pharynx in Tetrapoda(60). We have 

captured this information in our annotations of similarities between anatomical entities, that the 

homology retrieval webtool uses to answer the user query. 

Resources to access data 

We provide access to the annotated and processed expression values through the Bioconductor(61) 

R(62) package BgeeDB(63). BgeeDB is a collection of functions to import into R these data, 

facilitating downstream analyses. BgeeDB also allows to run TopAnat analyses, offering more 
flexibility in the choice of input data and analysis parameters than the web-interface.  

Bgee also provides a SPARQL(64) endpoint which is based on the EasyBgee database. EasyBgee is 

a lighter version of the Bgee database, that contains the most useful information, made explicit. The 

endpoint is accessible at the address https://bgee.org/sparql/. In addition to SPARQL endpoint 

querying through any programmatic language, a web-interface also offers the possibility to run more 
user-friendly queries, developed as part of the BioSODA project(65). This web-interface is available at 

http://biosoda.expasy.org/. Bgee specific queries are present under the category “Bgee database 

queries”. 

We provide TSV files to retrieve, for each species: i) annotated and processed expression values for 

RNA-Seq and Affymetrix data; and ii) calls of presence/absence of expression with confidence and 
rank scores generated from all data types. 
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DISCUSSION 

The philosophy of Bgee is to provide information and data which users can trust, so that they can be 

built on to do further work. Expert manual curation is at the core of providing trustworthy information 

(66–69). It is key to certify that expression data is from healthy wild-type samples, and to annotate 
precisely and accurately. It is also the only way to generate reliable annotations of anatomical 

homology. While expression data analysis is not specific to Bgee(8), our approach is to focus on 

delivering clear biological signals, and choosing the best methodology to do so. For users to have an 

easy and intuitive access to information from expression data, despite its complexity, we have chosen 

to present different views which answer different questions. These include summarized views, such 

as the Gene Page or Expression Comparison, with more advanced access, such as the R packages 

or SPARQL endpoint, to serve different use cases and ensure flexibility. 

Comparative transcriptomics is essential to understand the molecular basis for phenotypes, such as, 

for instance, evolution of animal morphology(70), embryonic cell differentiation(71), species 

lifespan(72, 73), or cancer evolution(74). Bgee, by generating comparable reference sets of 

expression patterns in multiple species, and homology relations to link them, is the first resource to 

allow the systematic and automated comparison of gene expression patterns between species. 

These comparisons are based on the present/absent calls of expression produced by Bgee. It is thus 

essential that these calls capture the relevant functional aspects of gene expression. This relevance is 

demonstrated, for instance, by the results provided by our webtools “Gene Page”, and by TopAnat. 

On the Gene Page, the top ranked conditions of genes are relevant to their known biology (e.g., as of 

Bgee 14.1: several muscle regions for human PDE4DIP gene, “liver” for mouse Apoc1 gene, 

“pancreas” for Xenopus ins gene). In TopAnat, results for list of genes are highly representative of 
their known function (e.g., as of Bgee 14.1: top ranked condition is “spermatocyte” for a list of mouse 

genes associated with spermatogenesis, “musculature of body” for a list of cow genes with a relation 

to muscle in their description). Bgee thus provides reference sets of expression patterns that are 

accurate and predictive of gene functions. 

Here we have presented the latest release of Bgee, which integrates expression information from four 
well established data types. An important feature is that the model of Bgee allows integration of new 

data types into the same framework. From each new data type, we need to define quality control 

criteria, conditions for calling gene expression present or absent, and rules for expression ranks. 

Once this is done, our model will allow views and tools such as the Gene Page, the Expression 

Comparison, or TopAnat to make use of the new data together with the previously available data. 

Notably, single-cell RNA-Seq presents an important perspective of combining anatomical precision 

beyond that of in situ hybridization with the broad coverage of microarrays or RNA-Seq. Unlike 

dedicated single-cell databases, Bgee offers the perspective of a unified view of gene expression from 
the cellular to the organism level, which we believe will be increasingly relevant. 
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TABLE AND FIGURE LEGENDS 

Figure 1: Bgee pipeline overview. Expression data are retrieved from various databases; they are 

annotated by the Bgee team, or annotations from Model Organism Databases are remapped by the 

Bgee team, to ontologies describing developmental stages, anatomy, taxa; quality controls are 
performed, using for instance FastQC for RNA-Seq data, IQRray for Affymetrix data; data are then 

analyzed using specific tools, such as kallisto to produce TPM values from RNA-Seq data, or limma to 

compute TMM normalization factors, and presence/absence expression calls are then produced; all 

the expression data and analysis results are integrated into the MySQL Bgee database; these data 

are then leverated by the different tools offered by Bgee: Bgee web-interface, Bioconductor packages, 

SPARQL endpoint, FTP server. Icons for tools and databases retrieved from their respective website. 

Figure 2: propagation of calls of presence/absence of expression. Calls of presence/absence of 

expression are produced from the raw data (left table), for instance: call of presence of expression for 

gene INS1 in exocrine pancreas at sexually immature developmental stage; call of presence of 

expression for gene ARF6 in endocrine pancreas at sexually immature developmental stage; call of 

absence of expression for gene SRRM4 in pancreas at fully formed developmental stage. A graph of 

conditions is generated by using the anatomical ontology and the developmental stage ontology, to 

allow propagation of expression calls (top left box): for instance, the condition “endocrine pancreas 
(UBERON:0000016) - sexually immature (UBERON:0000112)” is a child of the condition “pancreas 

(UBERON:0001264) - fully formed (UBERON:0000066)”; the condition “endocrine pancreas 

(UBERON:0000016) - fully formed (UBERON:0000066)” is a parent of the condition “endocrine 

pancreas (UBERON:0000016) - sexually immature (UBERON:0000112)”. Calls of presence of 

expression are propagated to all parent conditions; calls of absence of expression are propagated to 

direct child anatomical entities (top right box). The bottom box shows the hierarchy of conditions, and 
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how data are propagated. This propagation of calls allow the integration of data that were produced 

and annotated with different granularity: for instance, while before propagation there was information 

in “pancreas (UBERON:0001264) - fully formed (UBERON:0000066)” only for the gene SRRM4, after 

propagation the expression of the three genes can be compared in this condition (bottom box). 

Figure 3: screenshots of the Bgee web interfaces. A: example of gene search (top left) for the term 

“insulin” (https://bgee.org/?page=gene&query=insulin), allowing to go to the gene page (top right) 

displaying ranked conditions with expression for the human gene INS 

(https://bgee.org/?page=gene&gene_id=ENSG00000254647). B: example of comparison of 

expression patterns for the SRRM4 genes (brain-related genes) in 13 species 
(https://bgee.org/?page=expression_comparison&data=34beddfc93bb7fbb440e757e6de24d91fc0ce1

77). C: Anatomical homology retrieval tool, with here an example query allowing to identify swim 

bladder as the anatomical structure in zebrafish homlogous to the human lung 

(https://bgee.org/?page=anat_similarities&species_list=9606&species_list=7955&ae_list=UBERON%

3A0002048). D: example of TopAnat analysis on a set of human genes associated to autism and 

epilepsy, identifying the enriched conditions with expression of these genes as specific brain regions 

(https://bgee.org/?page=top_anat#/result/8fce889da7b4519c5792573ed3933032c8122819/). 

Table 1: Data sources of Bgee, with URLs, references, and descriptions. 
 
Table 2: Data statistics for release Bgee 14.1 per species for the 29 species included in this 

version. 
This table provides the number of EST libraries integrated, number of in situ hybridization experiments 
and evidence (e.g., the image of a staining) counts, number of Affymetrix chips and experiments, 
number of RNA-Seq libraries and experiments. 
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Data sources URL reference Description 

Genomics databases  	  

Ensembl 
http://www.ensembl.org/
index.html (3)	

Source for gene 
annotations, mappings 
to the Gene Ontology to 
Affymetrix probeset IDs, 
and cross-references to 
other databases 

miRBase http://www.mirbase.org/ (25)	
Source for miRNA 
families 

OMA 
https://omabrowser.org/
oma/home/ (16) 

Source of gene 
orthology information 

EnsemblMetazoa 
http://metazoa.ensembl.
org/index.html (2)	

Source for gene 
annotations, mappings 
to the Gene Ontology to 
Affymetrix probeset IDs, 
and cross-references to 
other databases 

RNA-Seq  	  

GEO 
https://www.ncbi.nlm.nih
.gov/geo/ (26)	

RNA-Seq data source 
for various species 

GTEx - dbGAP 

https://www.ncbi.nlm.nih
.gov/projects/gap/cgi-
bin/study.cgi?study_id=
phs000424.v8.p2 (27)	 GTEx RNA-Seq data 

SRA 
https://www.ncbi.nlm.nih
.gov/sra (28)	

RNA-Seq data source 
for various species 

Affymetrix  	  

ArrayExpress 
https://www.ebi.ac.uk/ar
rayexpress/ (29)	

Affymetrix data source 
for various species 

GEO 
https://www.ncbi.nlm.nih
.gov/geo/ (26)	

Affymetrix data source 
for various species 

In Situ  	  

BDGP 
https://insitu.fruitfly.org/c
gi-bin/ex/insitu.pl (30–32)	

Drosophila in situ data 
source 

FlyBase http://flybase.org/ (33)	
Drosophila in situ data 
source 

MGI 
http://www.informatics.ja
x.org/expression.shtml (34)	

Mouse in situ data 
source 

WormBase 
https://wormbase.org/#
%23012-34-5 (23)	

Nematode Information 
Resource 

Xenbase 
http://www.xenbase.org/

(35)	
Xenopus in situ data 
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entry/ source 

ZFIN http://zfin.org/ (36)	
Zebrafish in situ data 
source 

EST  	  

smiRNAdb 
http://www.clipz.unibas.
ch/cloningprofiles/ (37)	 EST data for miRNAs 

UniGene 
https://www.ncbi.nlm.nih
.gov/UniGene/ (38)	

EST data source for 
various species 

Ontologies  	  

CIO 
http://obofoundry.org/on
tology/cio.html (39)	

Confidence Information 
Ontology 

Developmental stage 
ontologies 

https://github.com/obop
henotype/developmenta
l-stage-ontologies/ 	

Collection of 
developmental and life 
stage ontologies in 
animals. Integrated into 
Uberon 

GO 

http://geneontology.org/
GO.downloads.ontology
.shtml (15)	 Filtered Gene Ontology 

Uberon https://uberon.github.io/ (17)	

Integrated cross-
species ontology 
covering anatomical 
structures in animals. 
Use of the subset 
"composite-metazoan" 

Other sources  	  

Anatomical similarity 
annotations 

https://github.com/Bgee
DB/anatomical-
similarity-annotations/ 	

Define evolutionary 
relations between 
anatomical entities 
described in the Uberon 
ontology 

NCBI Taxonomy 
https://www.ncbi.nlm.nih
.gov/taxonomy (13)	

Source taxonomy used 
in Bgee 
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Species EST In Situ Affymetrix RNA-Seq 

 libraries evidence experiments chips experiments libraries experiments 

Anolis 
carolinensis - - - - - 31 5 

Bos taurus - - - - - 121 8 

Caenorhabditi 
selegans - 360 141 177 34 41 6 

Canis lupus 
familiaris - - - - - 141 21 

Cavia porcellus - - - - - 28 4 

Danio rerio 108 42153 4674 186 33 147 16 

Drosophila 
ananassae - - - - - 4 1 

Drosophila 
melanogaster 62 92227 5468 965 92 253 11 

Drosophila 
mojavensis - - - - - 8 1 

Drosophila 
pseudoobscura - - - - - 10 1 

Drosophila 
simulans - - - - - 15 2 

Drosophila virilis - - - - - 4 1 

Drosophila 
yakuba - - - - - 4 1 

Equus caballus - - - - - 232 22 

Erinaceus 
europaeus - - - - - 6 1 

Felis catus - - - - - 32 5 

Gallus gallus - - - - - 48 6 

Gorilla gorilla - - - - - 13 2 

Homo sapiens 2393 - - 5452 323 5676 36 

Macaca mulatta - - - 14 1 238 18 

Monodelphis 
domestica - - - - - 108 15 

Mus musculus 706 223513 37654 6095 698 330 30 

Ornithorhynchus 
anatinus - - - - - 21 4 

Oryctolagus 
cuniculus - - - - - 55 13 
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Pan paniscus - - - - - 13 2 

Pan troglodytes - - - - - 250 18 

Rattus 
norvegicus - - - 107 2 106 8 

Sus scrofa - - - - - 169 14 

Xenopus 
tropicalis 66 2400 1304 - - 259 5 
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