
Exploring Ratings in Subjective Databases
(Authors’ Copy)

Sihem Amer-Yahia
sihem.amer-yahia@univ-grenoble-

alpes.fr
CNRS, Univ. Grenoble Alpes

Tova Milo
milo@post.tau.ac.il
Tel Aviv University

Brit Youngmann
brity@mail.tau.ac.il
Tel Aviv University

ABSTRACT

Subjective data links people to content items and reflects who likes
or dislikes what. The valuable information this data contains is
virtually infinite and satisfies various information needs. Yet, as of
today, dedicated tools to explore this data are lacking. In this paper,
we develop a framework for Subjective Data Exploration (SDE).
Our solution enables the joint exploration of items, people, and
people’s opinions on items, in a guided multi-step process where
each step aggregates the most useful and diverse trends in the form
of rating maps. Because of the large search space of possible rating
maps, we leverage pruning strategies based on confidence intervals
and multi-armed bandits. Our large-scale experiments with human
subjects and real datasets, demonstrate the need for dedicated SDE
frameworks and the effectiveness and efficiency of our approach.

CCS CONCEPTS

• Human-centered computing → Systems and tools for interac-

tion design; Visualization systems and tools.

KEYWORDS

Subjective Data, Data Exploration, Recommender Systems.
ACM Reference Format:

Sihem Amer-Yahia, Tova Milo, and Brit Youngmann. 2021. Exploring Rat-
ings in Subjective Databases (Authors’ Copy). In Proceedings of the 2021

International Conference on Management of Data (SIGMOD ’21), June 20–

25, 2021, Virtual Event, China. ACM, New York, NY, USA, 14 pages. https:
//doi.org/10.1145/3448016.3457259

1 INTRODUCTION

Subjective data is characterized by a mix of facts and opinions. With
the proliferation of user-generated content, subjective databases
have grown in size [39, 52]. Yet, as of today, dedicated exploration
tools are lacking. In this paper, we develop SubDEx, a framework
for Subjective Data Exploration (SDE).

As in general-purpose Exploratory Data Analysis (EDA), SDE
requires iterative data filtering and generalization. Additionally, the
purpose of SDE is to examine user-item relationships. For instance,
a social scientist who studies cinema-related population trends in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD ’21, June 20–25, 2021, Virtual Event, China

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8343-1/21/06. . . $15.00
https://doi.org/10.1145/3448016.3457259

Movielens, would benefit from seeing aggregated movie ratings,
followed by a selection to explore the opinion of some reviewers.
Similarly, when examining restaurants in Yelp, one may benefit
from seeing aggregated ratings on a type of cuisine in a given
neighborhood by reviewers in a certain age range, followed by a
request to cover additional neighborhoods. Like in EDA, SDE users
need guidance as they seldom know precisely what they are looking
for and generally only have partial knowledge of the underlying
data. Additionally, SDE must satisfy specific needs that occur when
exploring a mix of facts and opinions. Let us consider an example.

Example. Mary is a social scientist looking for insights on restau-

rants in New York City. Figure 1 summarizes a 3-step exploration of

those restaurants and their reviewers. In Step I, Mary examines the

reviewers’ overall ratings and sees no significant difference between

age groups (upper histogram). As a young adult, her next operation is

to look deeper into that group in Step II. She discovers that they gave

the highest ratings for food to restaurants in Williamsburg (upper

histogram). She also finds that on average, young female adults have

given the lowest ambiance rating (lower histogram). In Step III, Mary

dives deeper into the ratings of young female adults, and finds that

programmers among them provided the lowest overall ratings (upper

histogram). She also sees that those reviewers gave the highest service

ratings to Japanese restaurants (lower histogram). With only a few

steps, Mary obtained detailed insights on people’s opinions on New

York City restaurants.

Mary’s example illustrates the key characteristics of SDE. The
first is the need to process items, users, and ratings as first-class
citizens, to simultaneously filter them and aggregate their rela-
tionships (need N1). The second need is to diversify aggregation
dimensions, e.g., food vs. service for restaurants, across exploration
steps (need N2). Table 1 summarizes those needs and positions
our work appropriately. Columns in bold font emphasize the new
requirements, namely: (1) revisit the “quality” of an exploration
step to capture a new type of diversity on aggregation dimensions,
(2) simultaneously recommend drill-down/roll-up operations and
visualizations, and (3) combine optimizations of operations and vi-
sualizations due to the very large number of user-item relationships.
In this work, we approach the problem holistically and develop a
dedicated framework for SDE to achieve all those requirements.

Our first contribution is to formalize the SDE framework. We
represent the data as a bipartite graph with reviewer-nodes and
item-nodes, and links between them. At each exploration step, the
user applies filtering or generalization: e.g., select an age group for
reviewers to examine their opinions, or generalize the location of
restaurants to cover more neighborhoods. Each operation returns

https://doi.org/10.1145/3448016.3457259
https://doi.org/10.1145/3448016.3457259
https://doi.org/10.1145/3448016.3457259

Reviewers
ov

er
al

l s
co

re
fo

od
 s

co
re

Restaurants

NYC

Step I

Young-Adult

Reviewers

fo
od

 s
co
re

am
bi
an
ce
 s
co
re

Restaurants

NYC

Step II

Reviewers

se
rv
ic
e
sc
or
e

ov
er
al
l s
co
re

Female
Young-Adult

Restaurants

Williamsburg

Step III

Figure 1: Example of a three-step exploration. The user iteratively examines subsets of the reviewer and item tables. Links between selected

reviewer and item groups are aggregated as rating maps, showing the most “interesting" trends in the data.

subsets or supersets of items and reviewers whose ratings are ag-
gregated into 𝑘 rating maps [9]. Rating maps are histograms that
provide a bird’s-eye view of ratings by some reviewers for some
items. The ratingmaps displayed at each step are chosen to be useful
and diverse. Our notion of utility generalizes previous interesting-
ness measures [43, 51] and is defined as the highest value between
conciseness that favors a small number of aggregation dimensions
(bars in the histogram), agreement among reviewers within each
histogram [16], and peculiarity, to highlight unseen patterns [51].
Our notion of diversity reveals different data facets. To ensure that
the selected rating maps depict different rating dimensions (need
N2), we use weighted utility scores where the weights reflect the
number of times a rating dimension was previously shown.

Our second contribution is to realize the SDE paradigm by offer-
ing three explorationmodes:User-Driven, Recommendation-Powered,
and Fully-Automated. In the first mode, the system presents the
current 𝑘 most useful and diverse rating maps at each step, and the
user decides the next-step operation. This was the case for Mary
in our example. In the Recommendation-Powered mode, the system
recommends 𝑜 next-step operations based on the utility and diver-
sity of the rating maps they generate. The user can choose one
recommendation or perform an operation of her own. The third
Fully-Automatedmode relieves the user from choosing an operation,
and generates a fixed-size exploration path, by applying the top-1
operation at each step. All exploration modes need to solve the
Diverse Rating Map Set Selection Problem to determine the 𝑘 ratings
maps to display at each step. The Recommendation-Powered and
Fully-Automated modes further give rise to the Next-Step Recom-

mendations Problem that returns the most useful next-operations.
Our third contribution is computational. In practice, most rating

maps are low-utility and generating them wastes resources. We
therefore rely on pruning optimizations that estimate the weighted
utility of partial results for each map based on the data processed
so far, and prune low utility ones. To enable that, we adapt the
two pruning schemes proposed in [54] to find “interesting" visual-
izations for a given dataset. The first uses a worst-case confidence-
interval technique derived from the Hoeffding-Serfling inequality
[48], to bound the utilities of rating maps, and the second uses
multi-armed bandit allocation strategies to find the most useful rat-
ing maps. To address the Diverse Rating Map Set Selection Problem,
we compute 𝑙×𝑘 highest-utility maps, where 𝑙 is a positive pruning-
diversity factor. We then choose 𝑘 most diverse rating maps. To
this end, we employ the simple and efficient GMM algorithm [29],
which starts with an arbitrary rating map and iterates 𝑘−1 times

to find rating maps whose minimum distance to the currently cho-
sen maps is maximized. This algorithm achieves an approximation
factor of 2, and its running time is 𝑂 (𝑘2·𝑙).

Our fourth contribution is a thorough empirical investigation to:
(1) examine if user guidance (via recommendations or full automa-
tion) in SDE is useful in addressing information needs for users
with different CS expertise and domain knowledge, and (2) study
the scalability of our solution. Our experimental study is a first step
toward designing an SDE-specific benchmark that differs from data
exploration benchmarks [22] in that it focuses on extracting insights
on user-item relationships. Our user study with two common SDE
scenarios, identifying special data characteristics and extracting
insights, finds that (1) Only showing rating maps does not provide
enough information to guide users effectively, even when they are
CS experts; (2) Fully-Automated SDE is not flexible enough, as the
user cannot intervene; (3) Recommendation-Powered SDE is helpful
regardless of CS expertise; (4) Results do not depend on domain
knowledge. This validates the need for an iterative partially-guided
SDE. We further compare the quality of SubDEx’s recommenda-
tions with state-of-the-art drill-down view exploration and resul
summarization, showing SubDEx outperforms its competitors. Ad-
ditionally, we show that the exploration paths we generate address
needs N1 and N2. In particular, when the task is to identify special
data characteristics, utility-only exploration is superior. In contrast,
diversity-only exploration allows to examine various data facets
when the task is to extract. This suggests that SubDEx could be
tuned according to the task at hand. Finally, we show that our
optimization strategies offer a scalable solution to SDE.

A demonstration of SubDEx’s usability and its suitability to end-
to-end employment was presented in [10]. The short paper accom-
panying the demonstration provides only a high-level description
of the system, whereas the present paper provides the theoretical
foundations and algorithms underlying the demonstrated system.

2 RELATEDWORK

Table 1 summarizes the specific needs of SDE, pointing out the
unique features of SubDEx, compared with previous work on data
exploration and result summarization. SubDEx ensures that se-
lected results in each step are diverse (one-shot diversity). It also
ensures multi-step diversity and diversity among different aggrega-
tion dimensions (dimension diversity). Furthermore, SubDEx rec-
ommends data visualizations (viz recommendation) and next-action

Table 1: Positioning of SDE with respect to Data Exploration and Result Summarization.

Related Work Diversity Recommendation Optimization
One-Shot Multi-Step Dimensions Op Viz Op&Viz Op Viz Op&Viz

Exploration

[17, 23, 33, 42, 47, 51] X X

[11] X X X

[35] X X X

[18, 30, 36, 38, 49, 54] X X

[9, 59] X X X

Summarization [45] X X X X X X X

[24, 55, 58] X X X

[8, 46] X X

SDE SubDEx X X X X X X X X X

Reviewers

User ID Name Gender Age Group Occupation
1 Alice F Middle Aged Lawyer
2 Bob M Young Artist
3 Carol F Young Student
4 David M Middle Aged Teacher

Restaurants

Rest ID Name Cuisine State City Zip
1 Joe’s Farm Grill Burgers, Barbeque North Carolina Charlotte 77474
2 Uchi Japanese, Sushi Texas Austin 65414
3 Taqueria Pueblo Mexican Michigan Detroit 37268
4 Home Slice Pizza Pizza, Italian New York NYC 72297

Rating Records

User ID Rest ID Overall Food Service Ambiance
1 4 4 3 5 4
1 7 5 5 5 4
2 1 4 4 3 5
2 2 3 4 3 3
3 4 5 5 5 4

Figure 2: A subjective database with 4 rating dimensions.

operations (op recommendation) simultaneously, and employs ded-
icated optimizations for both types of recommendations.

Subjective Databases. Subjective data analysis is an emerging
research field [25, 39, 41, 56, 63], allowing to mine and analyze
user-generated data. Such data is widely used in web applications,
online rating systems, and more generally in the social sciences
[14, 43]. SDE serves large-scale population studies whose purpose
is to extract insights on user-item relationships [9, 21].

Exploratory Data Analysis. Exploratory Data Analysis (EDA) con-
sists in examining a new dataset with the goal of extracting insights
[40, 42, 64]. Guiding users in performing EDA is a well-studied task
[11, 27]. Numerous works proposed next-step recommendations
[42], by using logs of previous operations (e.g., [23]), or by relying
on real-time feedback [17, 33]. Fully automated generation of EDA
sessions has been examined in [11, 47]. A novel operator for in-
teractively exploring a relational table to discover and summarize
“interesting" groups of tuples was introduced in [35]. The authors
of [38] detect drill-down fallacy, an error that may occur when
incomplete insights are extracted along a drill-down path.

Data visualization is an essential step in extracting insights from
datasets. Auto-generation of interesting views is studied extensively
[20, 30, 35, 50, 53, 59]. As mentioned, SubDEx provides data visual-
izations by generating rating maps [9]. Previous work has shown
that such histograms are an adequate means of understanding rated
datasets [9, 31]. A common approach that we follow is to use heuris-
tic measures of interestingness [43, 51], searching the space of all
views, and returning the most interesting ones [49, 54]. Numerous
works have proposed solutions to enable scalable data visualization
[30, 38, 49]. For example, the authors of [36] proposed sampling to
find approximate visualizations while preserving crucial properties.

The authors of [18] employ in-memory caching and pre-fetching
to improve interactivity. A framework for accelerating statistical
analysis by avoiding repeated data access and computation was
presented in [57]. Here we leverage pruning and sampling opti-
mizations to determine which rating maps are low-utility and can
be discarded [54].

Result Diversification. Result diversification is well-studied in
query answering in databases [44], search engines [28] and recom-
mender systems [61]. This problem aims to return𝑘 results that take
both utility and diversity into consideration [19]. In many cases,
diversity comes at the cost of utility [44, 65]. A common approach
to measuring diversity, which we also adopted in our work, relies
on pairwise similarities [26, 44]. The main difference from previ-
ous work is that we also account for: (1) diversity among rating
maps selected in previous steps (multi-step diversity, accounted
by the global peculiarity scores), and (2) diversity among different
aggregation dimensions (dimensions diversity, accounted by the
dimension-weighted utility scores). This makes that choice of which
𝑘-size set of rating maps to display at each step more complex, as
it requires to account for three factors of diversity simultaneously,
while also ensuring only high-utility rating maps are selected.

A related problem is imposing diversity constraints that explicitly
increase the representation of historically disadvantaged popula-
tions or improving overall representativeness of selected popula-
tions [60, 62]. This line of work is complementary to ours, and could
be used to ensure that the opinions of different sub-populations are
displayed. Namely, one may require that rating maps depicting the
aggregated rating scores of specific sub-populations are selected.

Result summarization and explanation. The goal of result summa-
rization is to make a large set of results more informative [24, 58].
Unlike our work, summarization is a one-shot process. Such works
produce 𝑘 clusters showing their common properties such that the
clusters are diverse [45]. However, as can be seen in Table 2, since
this work is not specific to SDE, it does not handle multi-step diver-
sity, neither does it explicitly handle diversity among aggregation
dimensions. Summaries offer interpretable explanations of query
results and are referred to as explanation tables [8, 46, 55]. As we
demonstrate in our experiments, such algorithms can be leveraged
to produce “interesting" next-action recommendations. However,
they yield only operations that select subsets of an input, whereas
SubDEx also recommends operations that extend it.

Recommender systems. Recommender systems make use of differ-
ent sources of information to provide users with recommendations

of content items [12], of next-actions [42], or of data visualizations
[30, 38, 54, 59]. Unlike previous work (e.g., [42, 54]), SubDEx is able
to recommend data visualizations and next-actions simultaneously.
This is made possible by the ability to rank next-step operations
using the interestingness of the rating maps they return.

3 DATA MODEL AND SDE

3.1 Data Model

We consider a special type of database, called a subjective data-
base [39], which includes both objective and subjective attributes.
We model our database D as a triple ⟨I,U,R⟩, representing the
sets of items, users (referred to as reviewers), and rating records,
resp. Items and reviewers are associated with objective attributes,
such as a restaurant address, and a reviewer occupation. The rating
records have subjective attributes that reflect the ratings assigned by
reviewers to items. Such ratings can be extracted from reviews [39]
or directly provided by reviewers. Here we assume that there is a
single table where each rating dimension is a column. For instance, a
reviewer may rate a restaurant on several dimensions: food, service,
and ambiance. In that case, there will be one attribute per rating
dimension in the rating table. Formally, let 𝑟1, . . . , 𝑟𝑡 denote the rat-
ing dimensions. Each rating record 𝑟∈R is a tuple ⟨𝑖, 𝑢, 𝑠1, . . . , 𝑠𝑡 ⟩,
where 𝑖∈I, 𝑢∈U, and 𝑠 𝑗 , 𝑗 ∈ [1, 𝑡] is the numerical rating score
assigned by reviewer 𝑢 to item 𝑖 for the 𝑗-th rating dimension. The
values of 𝑠 are application-dependent and do not affect our model.
I is associated with a set of objective attributes, denoted by

I𝐴={𝑖𝑎1, 𝑖𝑎2, . . . }, and each item 𝑖∈I is a tuplewithI𝐴 as its schema.
In other words, 𝑖=⟨𝑖𝑣1, 𝑖𝑣2, . . . ⟩, where each 𝑖𝑣 𝑗 is a value for at-
tribute 𝑖𝑎 𝑗 . The value itself may be an atomic value or of complex
type (e.g., a set of values). For example, for the restaurant Joe’s Farm
Grill in Figure 2, the set of attribute values are ⟨{Burgers, Barbeque},
North_Carolina, Charlotte, 77474⟩ for the schema ⟨cuisine,
state, city, zip⟩. The attribute cuisine is multi-valued. Simi-
larly, we have the schema U𝐴={𝑢𝑎1, 𝑢𝑎2, . . . } for reviewers, i.e.,
𝑢=⟨𝑢𝑣1, 𝑢𝑣2, . . . ⟩∈U, where each 𝑢𝑣 𝑗 is a value for attribute 𝑢𝑎 𝑗 .

A reviewer group 𝑔𝑈 (resp., item group 𝑔𝐼) is a set of reviewers
(resp., items) that share the same values for a set of attributes defin-
ing its description {⟨𝑎1, 𝑣1⟩, ⟨𝑎2, 𝑣2⟩, . . . } where 𝑎𝑖∈U𝐴 (resp., I𝐴
for an item group). For example,𝑔𝑈 = {⟨gender, female⟩, ⟨age_group,
young⟩} contains all young female reviewers. Given reviewer and
item groups 𝑔𝑈 and 𝑔𝐼 , a rating group 𝑔𝑅 for 𝑔𝑈 and 𝑔𝐼 is defined
as the group of all rating records 𝑟=⟨𝑢, 𝑖, 𝑠1, . . . , 𝑠𝑡 ⟩ s.t. 𝑢∈𝑔𝑈 and
𝑖∈𝑔𝐼 . A rating group is captured by a set of attribute value pairs
expressed as a predicate on the rating table.

3.2 SDE Operations and Rating Maps

An SDE process starts when a user loads a dataset to an analysis
UI. She then executes a series of filtering/generalization (i.e., drill-
down/roll-ups) operations. After each operation, she examines the
results and decides to execute or not a new operation.

3.2.1 Exploration Operations. In each exploration step, the user
examines a rating group 𝑔𝑅 , defined by a reviewer group 𝑔𝑈 and
an item group 𝑔𝐼 . To move to the next step, the user performs a
filtering/generalization operation 𝑞 on 𝑔𝑈 , on 𝑔𝐼 , or on both (i.e.,
perform two operations simultaneously). We abuse the notation

and refer to an operation as 𝑞. An operation may add, remove, or
change the value of the selection criteria of a group, correspondingly
generating a new rating group. An operation can be expressed
as a standard SQL query. For example, the user may FILTER the
reviewers table by ‘occupation’ = ’student’, or the restaurants table
by ‘cuisine’ = ‘Indian’. The execution of an operation generates a
new rating group to be displayed to the user.

3.2.2 Rating Maps. To provide a bird’s eye view of the ratings in
a group 𝑔𝑅 , we use rating maps [9] - histograms that aggregate
ratings in 𝑔𝑅 for some rating dimension using some item/reviewer
attributes. Previous work has shown that such histograms are an
adequate means of understanding rated datasets [31]. We now
define the notions of rating distributions and rating maps.

Definition 1 (Rating Distribution [9]). The rating distribu-
tion of 𝑔𝑅 for a rating dimension 𝑟𝑖 , denoted by 𝑑𝑖𝑠𝑡 (𝑔𝑅, 𝑟𝑖), is a
probability distribution 𝑑𝑖𝑠𝑡 (𝑔𝑅, 𝑟𝑖)=[𝑤1, . . . ,𝑤𝑚], where the rating
scale is {1, ...,𝑚}, and𝑤 𝑗 is the number of rating records with value

𝑗 for the rating dimension 𝑟𝑖 in 𝑔𝑅 .

Definition 2 (Rating Map [9]). A rating map of a rating group

𝑔𝑅 for a rating dimension 𝑟𝑖 is a set of (subgroup,rating distribution)

pairs: 𝑟𝑚(𝑔𝑅, 𝑟𝑖) = (⟨𝑔1, 𝑑𝑖𝑠𝑡 (𝑔1, 𝑟𝑖)⟩ ,. . . , ⟨𝑔𝑘 , 𝑑𝑖𝑠𝑡 (𝑔𝑘 , 𝑟𝑖)⟩), where
𝑔𝑅 =

⋃𝑘
𝑗=1 𝑔 𝑗 and all subgroups are disjoint. The rating map also

associates to each subgroup 𝑔 𝑗∈𝑔𝑅 an aggregated score.

We use average in this work. Other aggregations could be used
such as the highest probability for the rating dimension 𝑟𝑖 . To
simplify the notation, we use 𝑟𝑚𝑔𝑅

𝑟𝑖 to denote 𝑟𝑚(𝑔𝑅, 𝑟𝑖), and omit
𝑟𝑖 and 𝑔𝑅 whenever it is clear from the context.

Example. We assume a rating group 𝑔𝑅 containing the ratings of

young reviewers for restaurants in NYC: 𝑔𝑅 contains rating records

for items in 𝑔𝐼= {⟨city, NYC⟩} and reviewers in 𝑔𝑈 = {⟨age_group,
young⟩. The top two tables in Figure 3 show two example rating maps

that correspond to the ones displayed in Figure 1, Step 𝐼 𝐼 . The first

partitions𝑔𝑅 by neighborhood. It associates to each subgroup its rating

distribution for food, and the average score. The second partitions 𝑔𝑅
by gender. It aggregates each subgroup by ambiance.

W.l.o.g and to simplify exposition, we assume that a rating map
𝑟𝑚 partitions 𝑔𝑅 using solely one reviewer or item attribute. Thus,
a rating map can be seen as the result of a GroupBy operation over
𝑔𝑅 , followed by an aggregation function (average in this work) to
assign a single rating score to each subgroup.

3.2.3 Utility of Rating Maps. In each exploration step, the user sees
a set of 𝑘 rating maps. This naturally raises the question of how to
select this set. As mentioned, an SDE tool must address two novel
needs: the need to process items, users, and ratings as first-class
citizens, to simultaneously filter them and aggregate their relation-
ships (N1), and the need to diversify aggregation dimensions (N2).
To address need N1, we ensure that high-utility and diverse rat-
ing maps are selected in each exploration step. To address N2, we
ensure that rating maps of different rating dimensions are chosen.

To define the utility of a rating map, we generalize commonly
used interestingness measures for data exploration [43, 51]. We
present next an intuitive definition of the used interestingness
criteria. Formal definitions of the measures used in our prototype
implementation are provided in Section 4.1.

𝑟𝑚: GroupBy neighborhood, aggregated by food score

city # of records rating distribution avg. score
Williamsburg 16 {1 : 1, 2 : 2, 3 : 1, 4 : 5, 5 : 7} 3.9
SoHo 20 {1 : 3, 2 : 3, 3 : 2, 4 : 5, 5 : 7} 3.5
Kips Bay 12 {1 : 2, 2 : 2, 3 : 2, 4 : 1, 5 : 5} 3.4
Tribeca 12 {1 : 3, 2 : 1, 3 : 2, 4 : 1, 5 : 5} 3.3
Chelsea 20 {1 : 3, 2 : 1, 3 : 9, 4 : 5, 5 : 2} 3.1
Midtown 20 {1 : 3, 2 : 3, 3 : 9, 4 : 3, 5 : 2} 2.9

𝑟𝑚′: GroupBy gender, aggregated by ambiance score
gender # of records rating distribution avg. score
Male 35 {1 : 5, 2 : 6, 3 : 4, 4 : 9, 5 : 11} 3.4
Unspecified 30 {1 : 5, 2 : 8, 3 : 7, 4 : 5, 5 : 5} 2.9
Female 35 {1 : 14, 2 : 10, 3 : 5, 4 : 5, 5 : 1} 2.1

Interestingness scores

No. conciseness agreement self peculiarity
𝑟𝑚 16.6 0.74 0.21
𝑟𝑚′ 33.3 0.76 0.27

Figure 3: Example of two rating maps, and their associated

interestingness scores.

Conciseness. The conciseness score of a rating map, 𝐶𝑜𝑛𝑐 (𝑟𝑚),
is a function of the number of subgroups in 𝑟𝑚. It favors rating
maps containing a small, human-readable number of subgroups
that summarizes a large number of records in 𝑔𝑅 .
Agreement. The agreement score of a rating map, 𝐴𝑔𝑟 (𝑟𝑚), con-
veys that each subgroup in 𝑔𝑅 contains reviewers who agree among
themselves on items for the examined rating dimension [16].
Peculiarity This measure ranks a rating map higher if its rating
distribution demonstrates a difference from some reference rating
distribution. We consider two peculiarity scores. One measures
the peculiarity of a rating map w.r.t. itself, denoted as 𝑃𝑒𝑐𝑠𝑒𝑙 𝑓 (𝑟𝑚),
examining the peculiarity of each subgroup within it w.r.t. the
rating distribution of the entire group. The second, 𝑃𝑒𝑐𝑔𝑙𝑜𝑏𝑎𝑙 (𝑟𝑚),
measures the peculiarity of a rating map w.r.t. previously displayed
rating maps (global). It captures the ability of a rating map to show
a new facet of the data that the user has not explored yet.

As the values of interestingness measures are on different scales,
we normalize them as proposed in [51].

The utility of a rating map 𝑟𝑚 at a given step, where the user has
seen a set of rating maps 𝑅𝑀 , is denoted by 𝑢 (𝑟𝑚, 𝑅𝑀), and is de-
fined as the maximal score that best captures its “interestingness":

𝑢 (𝑟𝑚, 𝑅𝑀) :=𝑚𝑎𝑥 (𝐶𝑜𝑛𝑐 (𝑟𝑚), 𝐴𝑔𝑟 (𝑟𝑚), 𝑃𝑒𝑐self (𝑟𝑚), 𝑃𝑒𝑐global (𝑟𝑚, 𝑅𝑀))

To address need N2, we introduce the dimension-weighted (DW)
utility score of a rating map. Let 𝑅𝑀 denote the set of rating maps
seen by the user, where |𝑅𝑀 |=𝑚. Assume that the rating dimensions
are 𝑟1, 𝑟2, . . . , 𝑟𝑡 , and that, so far, the number of rating maps aggre-
gated by dimension 𝑟𝑖 is𝑚𝑟𝑖 . Namely,𝑚=

∑𝑡
𝑗=1𝑚𝑟 𝑗 . Intuitively, the

DW utility score of a rating map 𝑟𝑚𝑟𝑖 is a combination of its utility
and a weight reflecting how important it is to promote dimension
𝑟𝑖 . Rating dimensions that have been rarely selected would be pro-
moted at the expense of those that have been frequently selected.
The DW utility score of a rating map 𝑟𝑚𝑟𝑖 , where 𝑅𝑀 is the set of
rating maps seen by the user, is defined as:

𝑢 (𝑟𝑚𝑟𝑖 , 𝑅𝑀):=(1−
𝑚𝑟𝑖

𝑚
)·𝑢 (𝑟𝑚𝑟𝑖 , 𝑅𝑀) (1)

Example. Let 𝑟1 be the overall rating score, 𝑟2 is the food score, 𝑟3 is
the service score, and 𝑟4 is the ambiance score. Assume that the number

of previously seen rating maps is𝑚=10, where𝑚𝑟1=3,𝑚𝑟2=3,𝑚𝑟3=3
and 𝑚𝑟4=1. Consider the rating group 𝑔𝑅 consists of all young re-

viewers who have rated some restaurant from New York city. Recall

that Figure 3 depicts a numeric description of two rating maps as-

sociated with 𝑔𝑅 . The first (𝑟𝑚𝑟2) obtained by grouping the records

according to the restaurants’ neighborhood, and is defined over the

food dimension. The second (𝑟𝑚′𝑟4) obtained by grouping the reviewers
according to their gender, and is defined over the ambiance dimen-

sion. Let us assume that 𝑢 (𝑟𝑚𝑟2)=0.6 and 𝑢 (𝑟𝑚′𝑟4)=0.8. We get that:

𝑢 (𝑟𝑚𝑟2 , 𝑅𝑀)=0.7·0.6=0.42, and 𝑢 (𝑟𝑚′𝑟4 , 𝑅𝑀)=0.9·0.8=0.72.

3.2.4 Diversity of RatingMaps. Following [7], we define𝑑𝑖𝑣 (𝑅𝑀) =
min𝑟𝑚,𝑟𝑚′∈𝑅𝑀 𝑑 (𝑟𝑚, 𝑟𝑚′), where 𝑑 is a distance function between
rating map pairs. Several definitions of 𝑑 are possible. In this work,
we use the Earth Mover’s Distance (EMD), a measure that was
shown to be well-adapted to comparing rating distributions [9, 54].
EMD ensures that rating maps having different rating distributions
are selected. As we will demonstrate in our experiments, this also
increases the probability of choosing rating maps aggregated by
different attributes, thereby exposing different data facets.

Our goal is to select a diverse 𝑘-size set of high-utility rating maps.
There are multiple approaches for maximizing the two objectives of
utility and diversity. In this work, we select the most diverse 𝑘-size
set of rating maps, out of a set of the top-(𝑘×𝑙) rating maps with
the highest DW utility scores, where 𝑙>1. Our experimental study
shows that a reasonable choice for the value of 𝑙 is 3.

Problem 1 (Diverse Rating Map Set Selection). Given a set

of rating records 𝑔𝑅 , a set of all possible rating maps 𝑅𝑀𝑔𝑅 associated

with 𝑔𝑅 , a set of rating maps 𝑅𝑀 that have been seen by the user so

far, and two positive integers 𝑙 and 𝑘 , find a diverse 𝑘-size set of rating

maps 𝑅𝑀 ′⊆𝑅𝑀𝑔𝑅 . Specifically, we solve: 𝑎𝑟𝑔𝑚𝑎𝑥𝑅𝑀′⊆𝑅𝑀𝑙
𝑑𝑖𝑣 (𝑅𝑀 ′),

where 𝑅𝑀𝑙 is an 𝑙×𝑘 set of rating maps found by solving:

𝑎𝑟𝑔𝑚𝑎𝑥𝑅𝑀𝑙 ⊆𝑅𝑀𝑔𝑅
Σ𝑟𝑚∈𝑅𝑀𝑙

𝑢 (𝑟𝑚, 𝑅𝑀).

Finding a diverse 𝑘-size set of rating maps 𝑅𝑀 ′ in a larger in-
put set 𝑅𝑀𝑙 is a well-studied problem that requires to optimize
diversity. An efficient PTIME 2-approximation algorithm can be
used to solve this problem in the case diversity is a diameter [29]
(which is the case in our definition). A main challenge is to avoid
materializing low-utility rating maps, i.e., to build 𝑅𝑀𝑙 . We refer to
𝑙 as the pruning-diversity factor. As we shall see, this factor affects
our pruning optimizations. When 𝑙=1, solving the above problem
finds a 𝑘-size set of rating maps with the highest utility scores, and
when 𝑙>1, the diversity increases, possibly at the expense of utility.

Note that we account for three facets of diversity: (1) diversity
among rating maps selected in the current step (accounted by Prob-
lem 1); (2) diversity among rating maps selected in previous steps
(accounted by global peculiarity), and (3) diversity among different
aggregation dimensions (accounted by the DW utility scores).

3.3 The SDE Paradigm

To fully realize the SDE paradigm, we allow users to explore subjec-
tive data following one of the modes: User-Drivenwhere the system
displays a set of rating maps at each step, and the user inputs the
next operation to be applied to the underlying reviewer and item

UI

SDE Engine

System Architecture

Se
le

ct
io

n
qu

er
y

G
ro

up
s

Se
le

ct
io

n
qu

er
y Groups

k-size RM set

R
M

Recommendation
Builder

R
ec

om
m

en
da

tio
n

Groups
k-size RM set

RM-Set Generator

RM generator

RM selector

Figure 4: SubDEx Architecture.

Figure 5: UI of SubDEx.

groups; Recommendation-Powered where at each step, the system
displays a set of rating maps and the top-𝑜 next-step recommenda-
tions to the user; Fully-Automated where the system displays a set
of rating maps in each step, and generates a sequence of𝑚 steps,
by applying the top-1 recommendation at each step. In all modes,
the system needs to solve Problem 1. The Recommendation-Powered

and Fully-Automated modes, also require to recommend next-step
operations. We next define the utility of an operation, and formalize
the problem of next-step recommendations.

Utility of an Exploration Operation. For each candidate operation,
the essence of the resulting rating group is presented to the user
in the form of a set of rating maps, describing its most interesting
trends. Correspondingly, we define the utility score of an operation
𝑞 to reflect the utility scores of the resulting rating maps. Let 𝑅𝑀𝑞

denote the 𝑘 rating maps generated by the application of 𝑞. The
utility of 𝑞 is denoted by u(𝑞, 𝑅𝑀) and depends on the set 𝑅𝑀 of
rating maps previously seen by the user (i.e., up to this step). It is
defined as the sum of the DW utilities of rating maps in 𝑅𝑀𝑞 :

u(𝑞, 𝑅𝑀) :=
∑

𝑟𝑚∈𝑅𝑀𝑞

𝑢 (𝑟𝑚, 𝑅𝑀) (2)

Problem 2 (Next-Step Recommendations). Given a group of

rating records 𝑔𝑅 , a set of previously displayed rating maps 𝑅𝑀 , and a

number 𝑜 , recommend the top-𝑜 next operations 𝑄 whose aggregated

utility is maximized: 𝑎𝑟𝑔𝑚𝑎𝑥𝑄Σ𝑞𝑖 ∈𝑄u(𝑞𝑖 , 𝑅𝑀) and |𝑄 | = 𝑜 .

Solving Problem 1 also serves solving Problem 2 since the utility
of an operation depends on utilities of rating maps it returns.

4 OUR SDE FRAMEWORK

The architecture of SubDEx is depicted in Figure 4. Given a user
selection query (that is either suggested by SubDEx or manually
specified by the user), the SDE engine first extracts from the data-
base the corresponding reviewer, item and rating groups. It then
sends those groups to the RM-Set generator which returns a 𝑘-size
set 𝑅𝑀 of diverse rating maps describing themost interesting trends
in the current rating group. Each rating map 𝑟𝑚, is then passed to
the Recommendation Builder which returns the top-𝑜 most inter-
esting next-step operations associated with 𝑟𝑚. The SDE Engine

then selects the overall top-𝑜 operations with the highest utility
(among all generated 𝑘×𝑜 operations), and displays the selected
rating maps and next-step recommendations to the user. To speed-
up computation, the SDE Engine calls the Recommendation Builder

several times in parallel, each time with a different rating map.
SystemUI. The user interacts with the system using a dedicated

UI, implemented in HTML5/CSS3, depicted in Figure 5. The user
investigates a rating group, by specifying reviewer/item attribute-
value pairs of interest. The selection is done using simple drop-down
menus, or, for advanced users, by providing SQL predicates using
the advanced screen. To move to the next step, the user can decide
whether she wants to perform a recommended operation, or to
provide an operation of her own. By clicking on “Apply Selection",
the corresponding rating group is displayed alongside a set of rating
maps. By clicking on “Get Recommendation”, a pop-up window
depicting next-step recommendations appears.

4.1 Implementation Details

In our implementation, we measure conciseness using the com-
paction gain measure [15]: 𝐶𝑜𝑛𝑐 (𝑟𝑚):= |𝑔𝑅 ||𝑟𝑚 | . To measure agree-

ment one can use existing dispersion measures (e.g., Schutz and
MacArthur [32]), that favor groups of similar records: 𝐴𝑔𝑟 (𝑟𝑚):= 1

�̃�
,

where �̃� is the average SD score of each subgroup in 𝑟𝑚. To measure
peculiarity of a rating map from some reference rating map, we
use the Total variation distance, a distance measure for probability
distributions. To compute 𝑃𝑒𝑐𝑠𝑒𝑙 𝑓 (𝑟𝑚), the self peculiarity score
of a rating map 𝑟𝑚 of a rating group 𝑔𝑅 , we compare the rating
distribution of each subgroup 𝑔 𝑗⊆𝑔𝑅 to the rating distribution of
𝑟𝑚. Following [51], the final self peculiarity score is the maximum
of the subgroups’ individual scores. Given a set of rating maps
the user has seen 𝑅𝑀 , we compute the global peculiarity score, by
examining the peculiarity between 𝑟𝑚’s rating distribution and the
distributions of each map in 𝑅𝑀 . The final score is the maximum
of the individual scores. Alternative peculiarity measures are the
Kullback-Leibler divergence distance, or the Outlier Function [39].

Example. Consider again the two rating maps in Figure 3. The

conciseness score of 𝑟𝑚′ is higher than that of 𝑟𝑚, as the number

of subgroups in 𝑟𝑚′ is smaller. The average agreement among each

subgroup in 𝑟𝑚′ is slightly higher than that of 𝑟𝑚. Not surprisingly,

as the subgroups’ rating distributions of 𝑟𝑚 are quite similar, the

self peculiarity score of 𝑟𝑚 is low. In contrast, the third subgroup

in 𝑟𝑚′ depicts a slightly different rating distribution from the other

subgroups, and hence its self peculiarity is higher than that of 𝑟𝑚.

Algorithm 1: Phase-based Execution Framework
input :A rating group 𝑔𝑅 , the set of all seen rating maps 𝑅𝑀 , two constants 𝑙 and 𝑘 ,

and the number of phases 𝑛.
output :A 𝑘×𝑙 -size set of rating maps 𝑅

1 𝑅 ← all possible rating maps for 𝑔𝑅
2 𝑤 ← getWeights(𝑅𝑀)

3 foreach 𝑖 ∈ [1, 𝑛] do
4 𝐷𝑖 ← the 𝑖-th fraction of the group 𝑔𝑅
5 updateResults(𝑅,𝑤, 𝑅𝑀 , 𝐷𝑖)
6 𝑅 ←pruneResults(𝑅, 𝑅𝑀 , 𝑘×𝑙)
7 return 𝑅

4.2 RM-Set Generator

At each exploration step, SubDEx displays to the user a diverse
𝑘-size set of high-utility rating maps. As mentioned, we account to
three aspects of diversity: one-shot, multi-steps, and aggregation
dimension. To achieve that, RM-Set Generator is composed of two
modules: RM Generator that outputs, w.h.p, the 𝑙×𝑘 rating maps
with the highest DW utilities. It does that by employing highly
efficient pruning techniques [54] for identifying high-utility rat-
ing maps. In our setting, (and unlike in [54] where each rating
map is associated with a single utility score), the utility score of
a rating map is the maximum of 4 criteria (see Section 3.2). Thus,
the key challenge here is to adapt the optimizations of [54] to our
context. RM Selector selects a diverse 𝑘-size set of rating maps, by
employing the GMM algorithm [29].

4.2.1 RM-Generator. This module generates only the top 𝑙×𝑘 maps
with the highest DW utility scores, where 𝑙 is a pruning-diversity
factor. We adapted two types of optimizations [54]. The first type
is sharing, where GroupBy queries are combined to share compu-
tation. The second is pruning, where low-utility rating maps are
dropped from consideration without scanning the whole dataset. As
in [54], we operate in a phased execution framework, where each
phase operates on a different, equally-sized subset of the dataset.

The framework is depicted in Algorithm 1. Our novel extensions
are highlighted in red. We begin with the set of all possible rating
maps (Line 1). We then compute the weights to be used for comput-
ing the DW utility scores, according to the set of previously-seen
rating maps 𝑅𝑀 , by calling the procedure getWeights (Line 2).
This procedure is described in Algorithm 2. During phase 𝑖 , we
update partial results for the rating maps that are still under con-
sideration using the 𝑖𝑡ℎ fraction of the rating group (Lines 4 − 5).
We do so by applying sharing-based optimizations to minimize the
number of queries on this 𝑖-th fraction. At the end of phase 𝑖 , we
use pruning-based optimizations to determine which rating maps to
discard (Line 6). In the sequel we explain our novel adaptations to
the pruning optimization of [54]. The retained rating maps are then
processed in the 𝑖 + 1-th phase, and the process continues. Last, we
return the resulting 𝑘×𝑙-size set of rating maps 𝑅 (Line 7).

The authors of [54] found that setting 𝑛, the number of phases,
to 10 works well in practice Thus, here as well, we set 𝑛=10.

Sharing-based Optimizations. : The goal of these optimizations
is to batch queries, reducing the number of queries issued to the
database. We adapted two of the sharing optimizations of [54]:
(1) Combining Multiple Aggregates: Given a rating group 𝑔𝑅 , we
examine all rating maps associated with 𝑔𝑅 . Rating maps with the
same grouping attribute can be rewritten as a single query with
multiple aggregations. (2) Parallel Query Execution. As noted in [54]

Algorithm 2: The getWeights Procedure
input :The set of all previously seen rating maps 𝑅𝑀 .
output :The weights for each rating dimension [𝑟1, . . . , 𝑟𝑡].

1 𝑚 ← |𝑅𝑀 |
2 𝑤 ← a 𝑡 -size vector initiates with zeros.
3 foreach 𝑟𝑚 ∈ 𝑅𝑀 do

4 𝑗 ← the index of the rating dimension used for 𝑟𝑚
5 𝑤 [𝑗] ← 𝑤 [𝑗] + 1
6 foreach 𝑖 ∈ [1, 𝑡] do
7 𝑤 [𝑖] ← 𝑤 [𝑖]/𝑚
8 return 𝑤

Figure 6: Example of Confidence-Based Pruning

(and also confirmed in our experiments), the optimal number of
queries to run in parallel is equal to the number of available cores.

Pruning-based Optimizations. : In practice, most rating maps are
low-utility and generating them wastes computational resources.
Thus, at the end of every phase, we use pruning optimizations
to determine which rating maps to discard. Specifically, partial
results for each rating map based on the data processed so far
are used to estimate DW utility, and rating maps with low DW
utility are dropped. We adapted two pruning schemes that were
presented in [54]. The first uses a confidence-interval technique to
bound utilities of rating maps. The second usesMulti-Armed Bandit

(MAB) allocation strategies to find high utility rating maps.
Confidence-interval pruning.This pruning scheme usesworst-

case statistical confidence intervals to bound rating maps utilities.
In our setting (and unlike in [54] where each rating map is associ-
ated with a single utility score), the utility score of a rating map is
the maximum among 4 criteria (as explained in Section 3.2). We use
this technique to estimate non-promising criteria defining utility
and to prune low-utility rating maps (Algorithm 3).

Let 𝐼1, 𝐼2, 𝐼3 and 𝐼4 denote the confidence intervals of the (normal-
ized) conciseness, agreement, self-peculiarly and global-peculiarity
scores, resp., of 𝑟𝑚. Every interval 𝐼𝑖 that lies entirely below another
interval 𝐼 𝑗 is discarded. The upper-bound (resp., lower-bound) of
𝐼 is defined to be the maximum (resp., minimum) value among all
remaining intervals (Line 3, resp., Lines 4−9). We then multiply the
bounds of the interval of a rating map by the weight associated
with its rating dimension (Lines 10−11). At that point, we keep
an estimate of the mean DW utility for every rating map, and a
confidence interval around that mean. We prune low-utility rating
maps as follows. If the upper bound of a rating map 𝑟𝑚 is less than
the lower bound of 𝑘 ′ or more rating maps, then 𝑟𝑚 is discarded
(Lines 12−17). As in [54], we use worst-case confidence intervals
derived from the Hoeffding-Serfling inequality [48].

Example. Consider the rating maps depicted in Figure 6. Each rat-

ing map is associated with 4 confidence intervals, one for each criterion
defining utility. The confidence interval of 𝑟𝑚1 (red dashed lines) is
defined by the upper value of the interval of its global-peculiarity, and

Algorithm 3: Confidence-interval based pruning
input :The set of all considered rating maps 𝑅, the rating dimension weights 𝑤, and

the number of rating maps to be considered 𝑘′=𝑘×𝑙 .
output :An updated set of rating maps 𝑅.

1 foreach 𝑟𝑚 ∈ 𝑅 do

2 intervals←sortByUpperBound(𝑟𝑚.𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠)
3 𝑟𝑚.𝑢𝑏 ← 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠 [0] .𝑢𝑏
4 𝑟𝑚.𝑙𝑏 ← 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠 [0] .𝑙𝑏
5 foreach 𝐼 ∈ intervals do
6 if 𝐼 .𝑢𝑏 ∈ [𝑟𝑚.𝑢𝑏, 𝑟𝑚.𝑙𝑏] and 𝐼 .𝑙𝑏 < 𝑟𝑚.𝑙𝑏 then

7 𝑟𝑚.𝑙𝑏 ← 𝐼 .𝑙𝑏

8 else

9 𝑟𝑚.𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠.remove(𝐼)

10 𝑟𝑚.𝑢𝑏 ← 𝑟𝑚.𝑢𝑏 · 𝑤 [𝑟𝑚.𝑑𝑖𝑚]
11 𝑟𝑚.𝑙𝑏 ← 𝑟𝑚.𝑙𝑏 · 𝑤 [𝑟𝑚.𝑑𝑖𝑚]
12 𝑅 ← 𝑅.sortByUpperBound()
13 topRatingMaps← 𝑅.getTopK(𝑘′)
14 lowestLowerbound← min(lowerBound(topRatingMaps))
15 foreach 𝑟𝑚 ∉ topRatingMaps do

16 if 𝑟𝑚.𝑢𝑝 <lowestLowerbound then

17 𝑅.remove(𝑟𝑚)

18 return 𝑅

the lower value of the interval of its agreement. Observe that there is

no need to estimate its self-peculiarity score, as its confidence interval

lies entirely below the confidence interval of 𝑟𝑚1. Assume that we

want to identify the top-2 rating maps. The confidence interval of

𝑟𝑚3 lies entirely below the intervals of 𝑟𝑚1 and 𝑟𝑚2. Since, w.h.p, the
utility of 𝑟𝑚3 lies within this interval, 𝑟𝑚3 can thus be pruned.

MAB based Pruning. Recall that our goal is to find the top 𝑙×𝑘
rating maps (arms) with the highest utility (reward). The authors
of [54] showed that, w.h.p, the Successive Accepts and Rejects
algorithm of [13] can be used to find rating maps with the highest
mean utility1. The MAB-based pruning technique of [54] can be
directly used in our setting. We provide here, for completeness,
only a brief overview of this technique. First, rating maps that are
still under consideration are ranked by their DW utility means. We
compute two differences between those means: Δ1, the difference
between the highest and the 𝑘 ′+1-th means, and Δ2, the difference
between the lowest and the 𝑘 ′-th means. If Δ1>Δ2, the rating map
with the highest mean is “accepted" in the top-𝑘 ′. Otherwise, the
rating map with the lowest mean is discarded.

4.2.2 RM-Selector. The RM-Generator outputs, w.h.p, the top-𝑘×𝑙
rating maps with the highest DW utility. Our goal is to select the
most diverse 𝑘-size set of rating maps, among them (i.e., one-shot
diversity). We employ the simple and efficient GMM algorithm [29].
It starts with an arbitrary rating map. For 𝑘−1 times, it then chooses
a new rating map whose minimum distance to the currently chosen
maps is maximized. As was proven in [29], this algorithm achieves
a 2-approximation factor, and its running time is 𝑂 (𝑘2·𝑙).

4.3 Recommendation Builder

Each rating map 𝑟𝑚 for a rating group 𝑔𝑅 is associated with a 𝑜-size
set of next-step recommendations. Recall that an operation 𝑞 is a
selection criteria defined over the underlying reviewer and item
groups (i.e., 𝑔𝑈 and 𝑔𝐼) of 𝑔𝑅 . Namely, 𝑞 is a set of attribute-value
pairs, defined as the union of 𝑔𝑈 and 𝑔𝐼 . For example, in Figure 5(a)
𝑞= {⟨age_group, young⟩, ⟨state, NY⟩, ⟨city, NYC⟩}.
1under certain assumptions about (normalized) reward distributions that hold in our
setting, as was proven in [13]

Let 𝑞′ denote the current selection operation over a rating group
𝑔𝑅 , and let 𝑞 denote a next-step operation. Although the space of
possible choices for 𝑞 is very large, it is natural to expect that a user
would be interested in a small adjustment to the current selection
query [37]. Thus, to ensure that operation recommendations are
understandable to users and preserve their train of thought [11],
we limit 𝑞 to be different from 𝑞′ in at most 2 attribute-values pairs.
Namely,𝑞may add a new attribute-value pair to𝑞′, andmay remove
or change one of the existing attribute-value pairs in 𝑞′.

Example. Consider again the middle rating map in Figure 5(a).

Assume that the current examined subgroup𝑔 selects female reviewers,

and recall that 𝑞′= {⟨age_group, young⟩, ⟨state, NY⟩, ⟨city, NYC⟩}.
The possible choices for 𝑞 include {⟨age_group, young⟩, ⟨state, NY⟩,
⟨city, NYC⟩, ⟨gender, female⟩} (only add a new attribute-value pair

to 𝑞′), {⟨age_group, young⟩, ⟨state, NY⟩, ⟨gender, female⟩} (also
remove one attribute-value pair from 𝑞′), and {⟨age_group, adult⟩,
⟨state, NY⟩, ⟨city, NYC⟩, ⟨gender, female⟩} (also change one attribute-
value pair from 𝑞′).

Candidate operations are ranked according to their utility, as
defined in Section 3.3. To compute the utility of an operation 𝑞, the
Recommendation Builder extracts from the database the relevant
reviewer, item and rating groups. It then uses the RM-set Builder, to
find the 𝑘-size set of rating maps to be displayed in the next step.
Namely, we are simultaneously recommending on rating maps and
next-actions, providing an optimized solution for both tasks.We can
compute the utility scores of 𝑥 operations simultaneously, where 𝑥
is the number of available cores. Finally, given a rating map 𝑟𝑚, the
Recommendation Builder returns the top-𝑜 operations associated
with 𝑟𝑚 with the highest utility scores.

5 EXPERIMENTAL STUDY

The goal of our experiments is to (1) examine if guidance in SDE
addresses users’ needs, and (2) study the scalability of our solution.

5.1 Experimental Setup

The experiments were executed on a Linux server with a 2.1GHz
CPU, and 96GB memory.

Datasets. We examine three datasets, which suitably include
both demographics and subjective opinions, as depicted in Table 2.2

Movielens [5]. This commonly used dataset includes informa-
tion about 943 reviewers who rated at least 20 movies each. The
data includes age, gender, occupation, and zip code. We enriched
this dataset with the reviewers’ city, state and ge-group (extracted
from the zip code and age), and the movies’ release year and decade
(extracted from the release date given in the dataset).

Yelp [6]. We use the subset of Yelp which contains restaurant
reviews. Following [39], we analyzed the reviews and extracted
the rating scores for the restaurants’ food, service and ambiance
(dimensions that were shown to be relevant in this domain [39]).
Given a rating dimension, e.g., service, we extracted all phrases
which include the word “service" and a fixed window of words
around it of size 5. We assigned a sentiment to each phrase using the
Vedar sentiment analysis measure [34] and computed the average
sentiment of all relevant phrases for each rating dimension.
2The datasets are available at [3].

Hotel Reviews [2]. This publicly available dataset includes
information on more than 15K reviewers. Here as well, we extracted
from each review the rating scores for the hotels’ cleanliness, food,
and comfort level (following [39]). As the Hotel Review dataset
demonstrated similar trends to Yelp, we omit it to save space.

Baseline Algorithms. For quality evaluation, we implemented
two state-of-the-art baselines for producing next-action recom-
mendations. Smart Drill-Down (SDD) takes a rating group 𝑔𝑅
and returns 𝑘 next-action operations following [35] that finds a
𝑘-size rule-list of “interesting" parts of a table (i.e., a rating group).
Each rule is a selection operation over reviewer and item groups.
Three factors make a rule-list interesting. One is if it contains rules
that cover a large fraction of 𝑔𝑅 . A second factor is if the rules are
“specific", , i.e., the subgroups. The third factor is diversity, which
measures how different the rules are from one another. This serves
as a baseline drill-down view exploration approach. Qagview takes
a rating group 𝑔𝑅 and returns 𝑘 next-action operations [58], which
finds a 𝑘-size diverse summary of a query result (i.e., a rating group).
The summary consists of 𝑘 clusters, each corresponds to a selection
operation over the underlying reviewer and item groups. Intuitively,
the summary is chosen to cover as many rating records in 𝑔𝑅 as
possible, and ensures that the selected patterns are different from
one another. This serves as a baseline result summarization approach.

For these baselines, we joined the item, reviewer and rating
tables, so that each next-action recommendation corresponds to a
simultaneous selection query over the reviewer and item groups.

For scalability evaluation, we examined the following baselines,
to evaluate the marginal contribution of each of our proposed opti-
mizations: (I) No-Pruning A restricted variant of SubDExwith no
pruning. (II) CI Pruning A restricted variant of SubDEx that uses
only the confidence interval pruning (Section 4.2). (III) MAB Prun-

ing A restricted variant of SubDEx that uses only the multi-armed
bandit pruning (Section 4.2). (IV) No ParallelismA restricted vari-
ant of SubDEx that uses the recommendation builder sequentially,
each time processing only a single rating map. (V) Naive A re-
stricted variant of SubDEx with no pruning and no parallelism.

Table 3 contains all default values. For Qagview, we set the value
of all records to 1, as the rating records are not valued. We set
the threshold on the number of records in a rating group 𝑔𝑅 to be
covered, to be |𝑔𝑅 |2 , and set the distance parameter 𝐷 , requiring
that the clusters are differ in at least 𝐷 attribute-values, to be 2.

5.2 Qualitative Evaluation

These experiments examine the role of exploration guidance in
addressing users’ information needs, the quality of SubDEx’s next-
action recommendations, and validate our formulation for selecting
a diverse set of high-quality rating maps. We do not examine al-
ternative data visualizations since previous work have shown that
rating maps are adequate for understanding rated datasets [9, 31].

Unlike in general EDA, SDE focuses on extracting insights on
“user-item relationships". While SubDEx caters to many SDE tasks,
in what follows, we focus on two typical scenarios whose goal is to
find particular types of user-item relationships:

Scenario I. Identifying special data characteristics. In this sce-
nario the goal is to find ‘irregular” item/reviewer groups. An ir-
regular group is described by two or three attribute-values shared
by the reviewers (resp., items), whose rating scores for the same
rating dimension have all been set to (the minimal value of) 1. Each
irregular group was created with at least five reviewers or items
and was generated by selecting attribute-value pairs uniformly at
random. This scenario simulates a real-life event where the goal
of a data analyst is to identify special data characteristics. The sub-
jects are asked to use SubDEx to find two irregular groups (one
reviewer group and one item group). For each subject, we measure
the number of correctly identified irregular groups (0, 1, or 2).

Scenario II. Insight extraction. In this scenario, we use Sub-
DEx for the task of insight extraction - a common goal in data
exploration. For both Movielens and Yelp, the Kaggle platform [4]
contains several EDA notebooks, manually created by fellow data
scientists to demonstrate their EDA process in obtaining insights.
From these notebooks, we extracted 5 insights on each dataset.
The subjects are tasked with the goal of using SubDEx to extract
as many insights as possible from a dataset. For each subject, we
measure the number of correctly identified insights ([0, 5]).

5.2.1 Exploration Guidance. To examine the benefit of guidance
during exploration, we run a user study and compare User-Driven,
Recommendation-Powered, and Fully-Automated modes for different
datasets, scenarios, and user CS and domain expertise. Our study
is conducted in 3 stages: pre-qualification, exploration, post-test.
The purpose of pre-qualification is to assess users’ expertise in CS
and their domain knowledge. The post-test measures how well the
subjects succeeded in the task. For each dataset and scenario, we
recruited 120 subjects on AmazonMechanical Turk [1]. This sample
size enables us to observe a 95% confidence level with a 10%margin
of error. We used the results of pre-qualification to group subjects
into 4 treatment groups "high/low domain knowledge, and high/low

CS expertise". Subjects with high CS expertise were assigned to the
User-Driven and Recommendation-Powered modes. Others were as-
signed to the Recommendation-Powered and Fully-Automatedmodes.
Subjects were asked to perform a task twice (each time using a dif-
ferent mode) and identify different irregular groups/insights. To
control for selection bias, in each treatment group, half of the sub-
jects (15) started with one mode then performed the task again with
the second mode, and the others did the reverse.

Pre-qualification. For Movielens, the questionnaire consists
of 10 questions on movies. Subjects who answered correctly more
than 5 questions were assigned to high domain knowledge groups.
Similarly, for CS expertise, 10 questions were used to group subjects.
3 For Yelp, subjects were asked to report how often they go to a
restaurant. Those who reported they visit a restaurant at least once
a week were assigned to high domain knowledge groups.

Results. Figure 7 summarizes the results. The experiment shows
that exploration mode order did not affect the results.4. Therefore,
whenever we discuss the average result of a treatment group, we
aggregate the results of 30 subjects. The same is true for the same

3Both questionnaires are available at [3].
4The results of every two subgroups of 15 subjects within each treatment group were
not statistically significant (ANOVA test, 𝑝 < .05)

Table 2: Examined Datasets.

Dataset # of Atts Max # of vals # of Rating Dimensions |R | |U | |I |

Movielens 12 29 1 100K 943 1682
Yelp 24 13 4 200500 150318 93
Hotel Reviews 8 62 4 35912 15493 879

Table 3: Default Values.

Parameter Default Value

of rating maps, 𝑘 3

of next-step recommenda-
tions, 𝑜

3

pruning-diversity factor, 𝑙 3

length of exploration path scenario I: 7 for all modes
scenario II: 10 for all modes

treatment group in each dataset and scenario. 5. This implies the
same level of difficulty of both tasks across datasets. Moreover, the
results of subjects with the same CS expertise were found to be
similar6 regardless of their domain knowledge.

In all cases, subjects using Recommendation-Poweredmode achieved
the best results, regardless of their domain knowledge or CS ex-
pertise. In Fully-Automated mode, subjects had no control over the
exploration path, and thus identified at best one irregular group in
scenario 𝐼 , or 4 insights in scenario 𝐼 𝐼 . Subjects in User-Driven had
little information onwhich operation is themost “interesting". Thus,
in most cases, they identified at most one irregular group (resp.,
three insights). These observations enable us to conclude that (1)

User-Driven SDE does not provide enough information to guide users

effectively, even when they are CS experts; (2) Fully-Automated SDE is
not flexible enough, as users cannot intervene to modify the paths; (3)

Recommendation-Powered SDE is helpful to users regardless of their

CS expertise. This validates the need for an iterative partially-guided

SDE, regardless of the task in hand and users’ domain knowledge.

of steps. We vary the number of exploration steps, examining
their effect on recall. To this end, for each mode, we asked 30
subjects to use SubDEx for both scenarios, without limiting the
number of steps. We provide the results obtained for Movielens, and
omit those for Yelp, as they were similar. The results are depicted in
Figure 8. Here again, subjects using the Recommendation-Powered

mode achieved the best results, regardless of the task at hand.
In what follows, we omit the results obtained for the second

scenario, as they are similar to the first scenario.

5.2.2 Quality of Recommendations. To examine the quality of Sub-
DEx’s next-action recommendations, we compare the results ob-
tained for different baselines (as described in Section 5.1). The set
of rating maps displayed in each step is fixed across all baselines.
W.l.o.g., we generate exploration paths with the Fully-Automated

mode, and measure the number of identified irregular groups.
The results are depicted in Table 4. The standard deviation in

all cases is < 0.2. Best results were obtained with SubDEx’s recom-
mendations. This stems from the fact that both SDD and Qagview
always produce “drill-down" recommendations. Namely, each next-
action operation focuses on a subset of the examined rating group.
However, to identify more than one irregular group, a “roll-up"
5The difference between the results for the same treatment group in different datasets
were not statistically significant (ANOVA test, 𝑝 < .05)
6i.e., not statistically significant (ANOVA test, 𝑝 < .05).

Table 4: Quality of recommendations. We report the average num-

ber of correctly identified irregular groups, while using three base-

lines to produce recommendations.

Baseline Movielens Yelp

SubDEx 0.9 0.8
SDD 0.6 0.4
Qagview 0.7 0.5

operation is needed. This demonstrates that SDE (like general EDA)
requires more than just summarization and drill-down view explo-
ration. Thus, off-the-shelf summarization and view exploration are
ill-suited in our setting. Additionally, due to the modular nature of
SubDEx the Recommendation Builder may be replaced with alter-
native implementations, yielding personalized recommendations
using logs of previous operations [23, 42], or user feedback [17, 33].

5.2.3 Parameter Tuning. We validate our formulation for selecting
a set of rating maps. To this end, we generate exploration paths
with the Fully-Automated mode, to fix the next-action operations,
and examine the effect of different parameters on the selected maps.

Utility vs. diversity. We vary the value of the pruning-diversity
parameter 𝑙 and examine its effect on utility and diversity. Recall
that when 𝑙=1, rating maps with the highest DW are selected. As 𝑙
increases, diversity increases, at the expense of utility. We measure
diversity using EMD. When diversity increases, rating maps of
different attributes are more likely to be chosen. To demonstrate
that, we report the number of distinct attributes shown, and the
average diversity score of the rating maps in each step. Recall that
the default number of steps in an exploration path in scenario 𝐼 is
7, and the number of rating maps in each step is 3 (Table 3). Thus,
the possible number of distinct attributes is bounded by 21 (or the
number of attributes in the dataset). The results are depicted in
Table 5. As expected, when 𝑙 increases, the diversity increases. As a
consequence, users seemore attributes, and hencemore facets of the
data. However, this comes at the cost of utility, as less “interesting"
rating maps are shown. Hence, the choice of 𝑙 clearly balances
utility and diversity. As we shell see, 𝑙 also affects running times.

We further report the average number of irregular groups identi-
fied by subjects examining utility-only or diversity-only exploration
paths. To this end, we asked 30 subjects to examine paths obtained
with the Fully-Automated mode. Half of the exploration paths were
generated using utility-only and the others using diversity-only for
both Movielens and Yelp. Table 6 summarizes the results. Observe
that in both datasets, subjects examining the utility-only paths
have succeeded in identifying more irregular groups than for the
diversity-only paths. This result is not surprising, since high-utility
maps are more likely to reveal irregular patterns in the data. For
the second scenario, on the other hand, examining various facets
of the data via diversity-only paths was preferable. This suggests
that our framework could be tuned according to the task at hand.

Scenario 𝐼
Movielens
High Domain

Knowledge

Low Domain

Knowledge

High CS Expertise UD: 0.8, RP: 1.4 UD: 0.7 , RP: 1.5
Low CS Expertise RP: 1.3, FA: 0.9 RP: 1.4, FA: 0.8

Yelp
High Domain

Knowledge

Low Domain

Knowledge

High CS Expertise UD: 0.6, RP: 1.4 UD: 0.7 , RP: 1.3
Low CS Expertise RP: 1.3, FA: 0.7 RP: 1.2,FA: 0.8

Scenario 𝐼 𝐼
Movielens
High Domain

Knowledge

Low Domain

Knowledge

High CS Expertise UD: 2.2, RP: 4.1 UD: 2.4 ,RP: 4.0
Low CS Expertise RP: 4.3 , FA: 3.1 RP: 4.2 , FA: 3.3

Yelp
High Domain

Knowledge

Low Domain

Knowledge

High CS Expertise UD: 2.4, RP: 4.4 UD: 2.3, RP: 4.2
Low CS Expertise RP: 4.4 , FA: 3.3 RP: 4.3, FA: 3.4

Figure 7: Exploration guidance results. We report the average number of identified irregular groups/insights using three modes: User-Driven
(UD), Recommendation-Powered (RP), and Fully-Automated (FA). The average standard deviation is for scenario 𝐼 (resp. 𝐼 𝐼) is 0.2 (resp. 0.4).

(a) Scenario 𝐼 . (b) Scenario 𝐼 𝐼 .

Figure 8: Recall as a function of exploration steps.

Table 5: Utility and diversity experiment.

Utility/Diversity Movielens Yelp

Utility-Only

attributes = 4
utility = 25.2
diversity = 0.02

attributes = 6
utility = 26.1
diversity = 0.03

𝑙 = 2
attributes = 6
utility = 22.4
diversity = 0.05

attributes = 10
utility = 23.4
diversity = 0.06

𝑙 = 3
attributes = 9
utility = 19.1
diversity = 0.09

attributes = 15
utility = 20.1
diversity = 0.09

Diversity-Only

attributes = 12
utility = 14.8
diversity= 0.11

attributes = 19
utility = 15.5
diversity = 0.11

Table 6: Avg # of identified irregular groups
7
.

Dataset Utility-only Diversity-only

Movielens 1.4 0.6
Yelp 1.3 0.6

of rating dimensions. To examine the effect of DW,we report the
number of rating maps per rating dimension, with/without using
dimension weights (Figure 9). We omit Movielens as it only has one
rating dimension. The results show that the weights help balance
the number of rating maps from each dimension. Without weights,
rating maps from a single dimension can be shown frequently at
the cost of other dimensions. This demonstrates that the DW utility

scores ensure rating maps of different rating dimensions are selected.

Utility criteria. . We study the individual contribution of the cri-
teria used in computing utility, and their aggregation. To this end,
we examined different variants of utility functions, using only one
utility criteria or the average aggregation function. We examined
exploration paths generated by injecting each of these utility vari-
ants into the Fully-Automated mode and measure the number of

Figure 9: Rating dimensions experiment.

identified irregular groups. Due to space limitation, we summarize
our main findings. The results indicate that using only a single
measure for defining utility (no matter the tested measure) is infe-
rior. This implies that the combination of multiple interestingness
measures is necessary. The results of employing the average aggre-
gation function instead of maximum are also inferior, suggesting
that maximum is a preferable aggregation function for our setting.

5.3 Scalability Evaluation

To examine the scalability of our solution and the marginal contri-
bution of each of the proposed optimizations, we report the running
times of each baseline algorithm described in Section 5.1. The run-
ning time of a step is measured between the time an operation is
picked and the time the resulting rating maps and next-step rec-
ommendations are displayed. We examine paths generated with
Fully-Automated for Scenario 𝐼 on the Yelp dataset, and report the
average processing time across all steps of all paths. We omit re-
sults for the second scenario and for other datasets and exploration
modes, as they demonstrated similar trends.

Data Properties. We examine the effect of data properties on
running times. We report the average results obtained over 10 runs.

Database size.We vary the database size by randomly sampling
reviewers. For each reviewer, we extract her rating records. We also
examined the option of sampling items and found similar results.
The results are depicted in Figure 10(a). In all cases, SubDEx runs
in less than 1 second. The database size has little effect on running
times. This can be explained by the number of possible rating maps
and next-step operations, which are determined by the number of

(a) # of rating records. (b) # of attributes. (c) # of attribute-values.

Figure 10: Running times as a function of different data properties.

(a) # of rating maps. (b) # of recommendations. (c) pruning-diversity factor.

Figure 11: Running times as a function of different system parameters.

attributes and values. As the records were randomly chosen, there
is no difference between different fractions of the data.

of attributes and # of attribute-values We vary the # of
attributes (akin to #GroupBys or # of ratingmaps) and # of attribute-
values (akin to # of next-step operations) and measure running time.
To do that, we randomly omit reviewer and item attributes (resp.,
attribute-values). Results are shown in Figure 10(b) and (c). For all
baselines, we see a near-linear growth in running times.

System Parameters. We vary the system parameters and examine
their effect on running time. We use the full Yelp dataset.

of rating maps We examine how the number of rating maps
displayed in each step affects performance. The results are depicted
in Figure 11(a). In all cases, we see almost no change in running times

when the number of rating maps increases. This result is expected,
since the pruning-diversity factor is fixed, and hence the same
overall number of rating maps is examined.

of recommendationsWe vary the number of recommenda-
tions. The results are shown in Figure 11(b). Due to parallelism,

we observe almost no change in the running times of SubDEx and

its variants that use parallelism, as the number of recommendations

increases. This stems from the fact that the Recommendation Builder

may process multiple rating maps simultaneously, producing corre-
sponding recommendations for each rating map. On the other hand,
the No Parallelism and Naïve baselines exhibit a linear growth in
running times as a function of the number of recommendations, as
they process one rating map at a time. The limit of the number of
rating maps that can be processed simultaneously is the number of

available cores. However, previous work has shown that a reason-
able number of recommendations to show at each point is typically
3 [42], implying that a rather small number of cores is sufficient.

The pruning-diversity factor We examine the effect of the
pruning-diversity factor 𝑙 on running times. Recall that this factor
dictates how many rating maps are discarded. When 𝑙 increases,
fewer rating maps are being pruned. The results are depicted in
Figure 11(c). Observe that in all baselines that use pruning, 𝑙 has a
great effect on running times. As discussed in Section 5.2.3, there
is a trade-off between running times, diversity, and utility. Our
experiments show that setting this parameter to 3 yields reasonable
running times while ensuring high diversity and utility.

6 CONCLUSION

We presented SubDEx a dedicated tool for Subjective Data Explo-
ration (SDE). We motivated the practical need for such a tool and
explained the additional needs, beyond the requirements of regular
data exploration, that require tailored solutions. We proposed prun-
ing optimization techniques to enable interactive running times.
Our extensive experimental study on various datasets validates our
formulation and demonstrates the scalability of our solution.

We are pursuing the extension of our work to support person-
alized exploration including accounting for indirect observations
such as mouse tracking. We are also considering the application
of machine learning techniques such as in [11, 47], to enable task-
specific global optimizations yielding new exploration paths.

Acknowledgment. This work has been partially funded by the
European Union’s Horizon 2020 research and innovation program

(grant agreement No 863410), the Israel Science Foundation, the
Binational US-Israel Science Foundation, Tel Aviv University Data
Science center, and eBay Israel.

REFERENCES

[1] 2020. Amazon Mechanical Turk. https://www.mturk.com/.
[2] 2020. Datafiniti Dataset. https://www.kaggle.com/datafiniti/hotel-reviews.
[3] 2020. Git Repository. https://github.com/subjectiveDataExploration/Exploring-

Ratings-in-Subjective-Databases.git.
[4] 2020. Kaggle. https://www.kaggle.com/.
[5] 2020. MovieLens 100K Dataset. https://grouplens.org/datasets/movielens/100k/.
[6] 2020. Yelp Dataset. https://www.yelp.com/dataset.
[7] Sofiane Abbar, Sihem Amer-Yahia, Piotr Indyk, and Sepideh Mahabadi. 2013.

Real-time recommendation of diverse related articles. In Proceedings of the 22nd

international conference on World Wide Web. 1–12.
[8] Deepak Agarwal, Dhiman Barman, Dimitrios Gunopulos, Neal E Young, Flip

Korn, and Divesh Srivastava. 2007. Efficient and effective explanation of change
in hierarchical summaries. In Proceedings of the 13th ACM SIGKDD international

conference on Knowledge discovery and data mining.
[9] Sihem Amer-Yahia, Sofia Kleisarchaki, Naresh Kumar Kolloju, Laks VS Laksh-

manan, and Ruben H Zamar. 2017. Exploring rated datasets with rating maps. In
Proceedings of the 26th International Conference on World Wide Web. 1411–1419.

[10] S. Amer-Yahia, T. Milo, and B. Youngmann. 2021. SubDEx: Exploring Ratings
in Subjective Databases. In 2021 IEEE 37th International Conference on Data

Engineering (ICDE).
[11] Ori Bar El, Tova Milo, and Amit Somech. 2020. Automatically generating data

exploration sessions using deep reinforcement learning. In Proceedings of the

2020 ACM SIGMOD International Conference on Management of Data. 1527–1537.
[12] Jesús Bobadilla, Fernando Ortega, Antonio Hernando, and Abraham Gutiérrez.

2013. Recommender systems survey. Knowledge-based systems (2013).
[13] Sébastian Bubeck, Tengyao Wang, and Nitin Viswanathan. 2013. Multiple identi-

fications in multi-armed bandits. In International Conference on Machine Learning.
258–265.

[14] David Carmel, Vanja Josifovski, and Yoelle Maarek. 2011. User modeling for web
applications. In Proceedings of the fourth ACM international conference on Web

search and data mining. 7–8.
[15] Varun Chandola and Vipin Kumar. 2007. Summarization–compressing data into

an informative representation. Knowledge and Information Systems 12, 3 (2007),
355–378.

[16] Mahashweta Das, Sihem Amer-Yahia, Gautam Das, and Cong Yu. 2011. Mri:
Meaningful interpretations of collaborative ratings. VLDB (2011).

[17] Kyriaki Dimitriadou, Olga Papaemmanouil, and Yanlei Diao. 2016. AIDE: an
active learning-based approach for interactive data exploration. IEEE Transactions
on Knowledge and Data Engineering 28, 11 (2016), 2842–2856.

[18] Punit R Doshi, Elke A Rundensteiner, and Matthew OWard. 2003. Prefetching for
visual data exploration. In Eighth International Conference on Database Systems

for Advanced Applications, 2003.(DASFAA 2003). Proceedings. IEEE, 195–202.
[19] Marina Drosou, HV Jagadish, Evaggelia Pitoura, and Julia Stoyanovich. 2017.

Diversity in big data: A review. Big data (2017).
[20] Marina Drosou and Evaggelia Pitoura. 2013. Ymaldb: exploring relational

databases via result-driven recommendations. The VLDB Journal 22, 6 (2013),
849–874.

[21] Fan Du, Catherine Plaisant, Neil Spring, and Ben Shneiderman. 2017. Finding
similar people to guide life choices: Challenge, design, and evaluation. In Pro-

ceedings of the 2017 CHI Conference on Human Factors in Computing Systems.
5498–5544.

[22] Philipp Eichmann, Emanuel Zgraggen, Carsten Binnig, and Tim Kraska. 2020.
Idebench: A benchmark for interactive data exploration. In Proceedings of the

2020 ACM SIGMOD International Conference on Management of Data. 1555–1569.
[23] Magdalini Eirinaki, Suju Abraham, Neoklis Polyzotis, and Naushin Shaikh. 2013.

Querie: Collaborative database exploration. IEEE Transactions on knowledge and

data engineering 26, 7 (2013), 1778–1790.
[24] Kareem El Gebaly, Parag Agrawal, Lukasz Golab, Flip Korn, and Divesh Srivastava.

2014. Interpretable and informative explanations of outcomes. Proceedings of the
VLDB Endowment (2014).

[25] Sara Evensen, Aaron Feng, Alon Halevy, Jinfeng Li, Vivian Li, Yuliang Li, Huining
Liu, George Mihaila, John Morales, Natalie Nuno, et al. 2019. Voyageur: An
experiential travel search engine. In The World Wide Web Conference. 3511–5.

[26] Piero Fraternali, Davide Martinenghi, and Marco Tagliasacchi. 2012. Top-k
bounded diversification. In SIGMOD.

[27] Jerome H Friedman and John W Tukey. 1974. A projection pursuit algorithm for
exploratory data analysis. IEEE Transactions on computers 100, 9 (1974), 881–890.

[28] Sreenivas Gollapudi and Aneesh Sharma. 2009. An axiomatic approach for result
diversification. In WWW. 381–390.

[29] Teofilo F Gonzalez. 1985. Clustering to minimize the maximum intercluster
distance. Theoretical computer science 38 (1985), 293–306.

[30] David Gotz and Zhen Wen. 2009. Behavior-driven visualization recommendation.
In Proceedings of the 14th international conference on Intelligent user interfaces.
315–324.

[31] Jonathan L Herlocker, Joseph A Konstan, and John Riedl. 2000. Explaining col-
laborative filtering recommendations. In Proceedings of the 2000 ACM conference

https://www.mturk.com/
https://www.kaggle.com/datafiniti/hotel-reviews
https://github.com/subjectiveDataExploration/Exploring-Ratings-in-Subjective-Databases.git
https://github.com/subjectiveDataExploration/Exploring-Ratings-in-Subjective-Databases.git
https://www.kaggle.com/
https://grouplens.org/datasets/movielens/100k/
https://www.yelp.com/dataset

on Computer supported cooperative work. 241–250.
[32] Robert J Hilderman and Howard J Hamilton. 2013. Knowledge discovery and

measures of interest. Vol. 638. Springer Science & Business Media.
[33] Enhui Huang, Liping Peng, Luciano Di Palma, Ahmed Abdelkafi, Anna Liu, and

Yanlei Diao. 2018. Optimization for active learning-based interactive database
exploration. (2018).

[34] Clayton J Hutto and Eric Gilbert. 2014. Vader: A parsimonious rule-based model
for sentiment analysis of social media text. In Eighth international AAAI conference
on weblogs and social media.

[35] Manas Joglekar, Hector Garcia-Molina, and Aditya Parameswaran. 2017. Interac-
tive data exploration with smart drill-down. IEEE Transactions on Knowledge and

Data Engineering (2017).
[36] Albert Kim, Eric Blais, Aditya Parameswaran, Piotr Indyk, Sam Madden, and

Ronitt Rubinfeld. 2015. Rapid sampling for visualizations with ordering guar-
antees. In Proceedings of the VLDB Endowment International Conference on Very

Large Data Bases, Vol. 8. NIH Public Access, 521.
[37] Nick Koudas, Chen Li, Anthony KH Tung, and Rares Vernica. 2006. Relaxing join

and selection queries. In Proceedings of the 32nd international conference on Very

large data bases. 199–210.
[38] Doris Jung-Lin Lee, Himel Dev, Huizi Hu, Hazem Elmeleegy, and Aditya

Parameswaran. 2019. Avoiding drill-down fallacies with VisPilot: assisted ex-
ploration of data subsets. In Proceedings of the 24th International Conference on

Intelligent User Interfaces.
[39] Yuliang Li, Aaron Feng, Jinfeng Li, Saran Mumick, Alon Halevy, Vivian Li, and

Wang-Chiew Tan. 2019. Subjective databases. Proceedings of the VLDB Endowment

12, 11 (2019), 1330–1343.
[40] Patrick Marcel, Nicolas Labroche, and Panos Vassiliadis. 2019. Towards a benefit-

based optimizer for Interactive Data Analysis.
[41] Zhengjie Miao, Yuliang Li, Xiaolan Wang, and Wang-Chiew Tan. 2020. Snippext:

Semi-supervised opinion mining with augmented data. In Proceedings of The Web

Conference 2020. 617–628.
[42] Tova Milo and Amit Somech. 2018. Next-step suggestions for modern interactive

data analysis platforms. In Proceedings of the 24th ACM SIGKDD International

Conference on Knowledge Discovery & Data Mining. 576–585.
[43] Behrooz Omidvar-Tehrani and Sihem Amer-Yahia. 2019. User Group Analytics

Survey and Research Opportunities. IEEE Transactions on Knowledge and Data

Engineering (2019).
[44] Lu Qin, Jeffrey Xu Yu, and Lijun Chang. 2012. Diversifying Top-k Results. (2012).
[45] Senjuti Basu Roy, Sihem Amer-Yahia, Ashish Chawla, Gautam Das, and Cong

Yu. 2010. Constructing and exploring composite items. In Proceedings of the

ACM SIGMOD International Conference on Management of Data, SIGMOD 2010,

Indianapolis, Indiana, USA, June 6-10, 2010, Ahmed K. Elmagarmid and Divyakant
Agrawal (Eds.). ACM, 843–854.

[46] Sunita Sarawagi. 1999. Explaining differences in multidimensional aggregates.
In VLDB, Vol. 99. 7–10.

[47] Mariia Seleznova, Behrooz Omidvar-Tehrani, Sihem Amer-Yahia, and Eric Simon.
2020. Guided Exploration of User Groups. Proc. VLDB Endow. 13, 9 (2020),
1469–1482.

[48] Robert J Serfling. 1974. Probability inequalities for the sum in sampling without
replacement. The Annals of Statistics (1974), 39–48.

[49] Tarique Siddiqui, Albert Kim, John Lee, Karrie Karahalios, and Aditya
Parameswaran. 2016. Effortless data exploration with zenvisage: an expres-
sive and interactive visual analytics system. arXiv preprint arXiv:1604.03583

(2016).
[50] Manish Singh, Michael J Cafarella, and HV Jagadish. 2016. DBExplorer: Ex-

ploratory Search in Databases.. In EDBT. 89–100.
[51] Amit Somech, Tova Milo, and Chai Ozeri. 2019. Predicting" What is Interesting"

by Mining Interactive-Data-Analysis Session Logs.. In EDBT. 456–467.
[52] Wang-Chiew Tan. 2020. Unleashing the Power of Subjective Data: Managing

Experiences as First-Class Citizens. In KDD ’20: The 26th ACM SIGKDD Conference

on Knowledge Discovery and Data Mining, Virtual Event, CA, USA, August 23-27,

2020. 3610.
[53] Manasi Vartak, Silu Huang, Tarique Siddiqui, Samuel Madden, and Aditya

Parameswaran. 2017. Towards visualization recommendation systems. ACM
SIGMOD Record 45, 4 (2017), 34–39.

[54] Manasi Vartak, Sajjadur Rahman, Samuel Madden, Aditya Parameswaran, and
Neoklis Polyzotis. 2015. Seedb: Efficient data-driven visualization recommenda-
tions to support visual analytics. In Proceedings of the VLDB Endowment Interna-

tional Conference on Very Large Data Bases, Vol. 8. NIH Public Access, 2182.
[55] Michael Vollmer, Lukasz Golab, Klemens Böhm, and Divesh Srivastava. 2019. In-

formative Summarization of Numeric Data. In Proceedings of the 31st International
Conference on Scientific and Statistical Database Management.

[56] Xiaolan Wang, Yoshihiko Suhara, Natalie Nuno, Yuliang Li, Jinfeng Li, Nofar
Carmeli, Stefanos Angelidis, Eser Kandogann, and Wang-Chiew Tan. 2020. Ex-
tremeReader: An interactive explorer for customizable and explainable review
summarization. In Companion Proceedings of the Web Conference 2020. 176–180.

[57] Abdul Wasay, Xinding Wei, Niv Dayan, and Stratos Idreos. 2017. Data canopy:
Accelerating exploratory statistical analysis. In Proceedings of the 2017 ACM

International Conference on Management of Data. 557–572.
[58] Yuhao Wen, Xiaodan Zhu, Sudeepa Roy, and Jun Yang. 2018. Interactive summa-

rization and exploration of top aggregate query answers. In Proceedings of the

VLDB Endowment. International Conference on Very Large Data Bases. NIH Public
Access.

[59] Kanit Wongsuphasawat, Dominik Moritz, Anushka Anand, Jock Mackinlay, Bill
Howe, and Jeffrey Heer. 2015. Voyager: Exploratory analysis via faceted browsing
of visualization recommendations. IEEE transactions on visualization and computer

graphics (2015).
[60] Ke Yang, Vasilis Gkatzelis, and Julia Stoyanovich. 2019. Balanced Ranking with

Diversity Constraints. In IJCAI. 6035–6042.
[61] Cong Yu, Laks Lakshmanan, and Sihem Amer-Yahia. 2009. It takes variety to

make a world: diversification in recommender systems. In EDBT. 368–378.
[62] Meike Zehlike, Francesco Bonchi, Carlos Castillo, Sara Hajian, Mohamed Mega-

hed, and Ricardo Baeza-Yates. 2017. Fa* ir: A fair top-k ranking algorithm. In
Proceedings of the 2017 ACM on Conference on Information and Knowledge Man-

agement.
[63] Xiong Zhang, Jonathan Engel, Sara Evensen, Yuliang Li, Çağatay Demiralp, and

Wang-Chiew Tan. 2020. Teddy: A System for Interactive Review Analysis. In
Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems.
1–13.

[64] Mengyu Zhou, Wang Tao, Ji Pengxin, Han Shi, and Zhang Dongmei. 2020. Ta-
ble2Analysis: Modeling and Recommendation of Common Analysis Patterns
for Multi-Dimensional Data. In Proceedings of the AAAI Conference on Artificial

Intelligence, Vol. 34. 320–328.
[65] Cai-Nicolas Ziegler, Sean M McNee, Joseph A Konstan, and Georg Lausen. 2005.

Improving recommendation lists through topic diversification. In Proceedings of

the 14th international conference on World Wide Web. 22–32.

	Abstract
	1 Introduction
	2 Related Work
	3 Data Model and SDE
	3.1 Data Model
	3.2 SDE Operations and Rating Maps
	3.3 The SDE Paradigm

	4 Our SDE Framework
	4.1 Implementation Details
	4.2 RM-Set Generator
	4.3 Recommendation Builder

	5 Experimental Study
	5.1 Experimental Setup
	5.2 Qualitative Evaluation
	5.3 Scalability Evaluation

	6 Conclusion
	References

