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ABSTRACT
Helping users explore data becomes increasingly more important
as databases get larger and more complex. In this demo, we present
PyExplore, a data exploration tool aimed at helping end users formu-
late queries over new datasets. PyExplore takes as input an initial
query from the user along with some parameters and provides
interesting queries by leveraging data correlations and diversity.
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1 INTRODUCTION
Data consumers such as analysts, scientists (biologists, astrophysi-
cists etc) and data scientists, access data sets of interest, looking
for answers, insights, patterns. Given the volume and complexity
of data as well as the fact that SQL is cumbersome for data ex-
ploration, users often struggle with finding what queries to ask
when they interact with a data set. Query recommendations come
to the rescue [13] as they help the user focus their search (e.g., by
recommending possible completions for a query [9, 19]) or offer an
alternative search path (e.g., recommending similar queries based
on user query behavior [4]). To do so, existing work is either based
on data analysis [5] or query log analysis [4, 9, 19]. Query logs have
been used either to mine frequent patterns and query dependen-
cies to find completions for user queries [9, 19] or to apply typical
recommendation strategies such as matrix factorization and latent
models [4] to find queries that could be related to what the user
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is currently looking for. In the absence of query logs, approaches
are based on data analysis [5]. The idea of splitting the initial user
query in meaningful areas has been introduced in [11, 17].

In our work, we focus on query completion recommendations in a
cold-start setting, i.e., without relying on query logs, an inherently
challenging problem. We present a new query recommendation
tool, PyExplore, that takes as input a SQL query and returns a
set of ranked queries, each of them focusing on a subset of the
initial query results that can help the user navigate the data space.
PyExplore is based on the observation that people better perceive
fewer dimensions, typically 2-3, and understand patterns in low-
dimensional spaces. PyExplore first finds ‘interesting’ subsets of
query attributes, i.e., that they exhibit correlation or diversity. Then,
for each such subset, it clusters the data based on the values of
the respective attributes. Our approach is based on the idea of
guiding the users with the help of cluster analysis introduced in [15]
and applied in the context of query recommendations in [11, 17].
Each cluster is mapped to a SQL query, which becomes a candidate
recommendation to be shown to the user. Essentially, each candidate
query is generated by augmenting the WHERE clause of the initial
query with new clauses that describe those cluster boundaries with
the help of a decision tree classifier.

We are working with three collaborators representing three user
communities, namely astrophysics, biology and policy making, on
how query recommendations can enhance their data exploration
tasks. To illustrate how PyExplroe works, we provide an example
of a real use case with astrophysicists.

Motivating Example. Sri, an astrophysicist, explores astronom-
ical objects in SDSS1, a large sky survey database. A single table
in SDSS, 𝑝ℎ𝑜𝑡𝑜_𝑜𝑏 𝑗 , contains several millions of rows and several
attributes. Sri would like to examine a part of the sky so she starts
with a query that defines the area she is interested in. First, PyEx-
plore finds how the attributes in the query results may correlate.
For example, it finds that relative ratios and strength of emission
lines are correlated; also, objects are correlated based on luminosity
and surface temperature. Then, PyExplore clusters the query results
for each set of correlated attributes. Clustering aims at producing
meaningful subsets of the query results. To generate query recom-
mendations, these clusters (per set of correlated attributes) are fed
into a decision tree classifier. The conditions in eachWHERE clause
describe those cluster boundaries according to the split points of the
decision tree classifier. In our example, PyExplore would generate
query recommendations for similar objects in terms of their relative
ratios and strength of emission lines as well as for similar objects in
terms of luminosity and surface temperature. Sri chooses a particular
recommendation to see similar objects based on the former group
1https://www.sdss.org/
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of attributes. Then, PyExplore will generate new query recommen-
dations for this new query. Finally, Sri may discover that green pea
emission line ratios are similar to high redshift galaxies. This is a
typical example of how PyExplore-type query recommendations
can help data exploration and discovery. □

Challenges. Several challenges arise, including: (a) finding in-
teresting subsets of attributes, (b) handling different types of at-
tributes such as numerical, categorical, string, (c) scoring query
recommendations, and (d) scaling to large datasets.

Contributions. PyExplore makes the following novel contri-
butions with respect to previous related work [11, 17]. To find
interesting subsets of attributes, it leverages two different intu-
itive concepts: data correlation and diversity. To handle data set
heterogeneity, it handles mixed numeric and categorical attributes.
Furthermore, to handle textual data, PyExplore extends the query
recommendation framework to a workflow for textual attributes.
It vectorizes the textual attributes and provides recommendations
based on their numeric representation. PyExplore can determine
whether a column is categorical or string by looking at the number
of unique values. The user can then choose whether to use the
mixed data or the string workflow. To rank recommendations, it
leverages the clustering quality metrics. Finally, since clustering is a
time-consuming process, PyExplore uses three ways of improving
execution time: sampling on rows and columns of the data set, pre-
computing the vectorization model and associations for the textual
attributes and an approximate workflow.

Demonstration. PyExplore also features a user-friendly UI that
allows the user to explore the query recommendations and a data
set. The tool allows the user to progressively build different explo-
ration paths by asking and following query recommendations. The
user can inspect results and useful visualizations as well as back-
track an exploration path to follow a different one. During the
demonstration, the participants will have the chance to dive into
different exploration scenarios in several data sets as well as look into
the algorithms and evaluate different recommendation configurations.
We will demonstrate PyExplore with real-world data exploration
use-cases such as astrophysics and policy making.

2 QUERY RECOMMENDATION MODEL
We consider an SPJ query 𝑄 over a database 𝐷 of the form:

SELECT A FROM T WHERE P

where T is a set of tables joined for the query, A is a subset of the
table attributes projected in the query result, and P is a conjunction
of selection predicates.

Given 𝑄 , the objective of query recommendation is to generate
a ranked set of queries Q = {𝑄𝑖 |𝑖 = 1 . . . 𝑘}, where 𝑄𝑖 has the form:

SELECT A FROM T WHERE Pi
where Pi is a conjunction of predicates over T that is a superset of
P. In other words, in each𝑄𝑖 , the WHERE clause is augmented with
new clauses. If the initial query did not contain a WHERE clause, a
new WHERE clause is built.

3 SYSTEM OVERVIEW
3.1 Interesting Subsets of Attributes
The first step is to find ‘interesting’ subsets of query attributes.
PyExplore leverages two notions: attribute correlation and diversity.

Correlation-based. Correlation is the measure of how two fea-
tures are correlated. For example, the month-of-the-year is corre-
lated with the average daily temperature, and the hour-of-the-day
is correlated with the amount of light outdoors. Data scientists
are interested in correlated attributes to highlight relationships
between attributes of the data set.

First, PyExplore computes the correlation of each pair of at-
tributes in the query results. One challenge is how to deal with
different types of attributes. For comparison between numerical
attributes, it uses Pearson correlation2, for categorical-categorical, it
uses Cramer’s V [2], and for categorical-numerical, it uses Correla-
tion Ratio3. To make all correlation metrics in the same range, i.e.,
[0, 1], we take the absolute value of the Pearson Correlation.

Then, the inverse of the absolute value of the correlation matrix
is used as a distance matrix, which is given as input to a clustering
algorithm that creates clusters of correlated attributes. PyExplore
uses two options for clustering correlated attributes: (a) hierarchical
clustering with complete linkage4 takes as input the maximum num-
ber 𝑠𝑖𝑧𝑒_𝑚𝑎𝑥 of attributes per cluster and decides the number of
clusters accordingly, and (b) OPTICS [1], which is a density-based
algorithm that decides howmany clusters to create and also clusters
all outliers together. This big cluster with outliers is ignored by the
recommendation algorithm.

Diversity-based. Intuitively, an attribute that has a diverse set
of values is interesting because it allows the user to explore a
larger part of the initial query results compared to a less diverse
attribute. To compute diversity for numerical columns, PyExplore
uses the normalized Shannon entropy5[18]. For categorical columns,
it computes the ratio between the unique values in the column and
the total rows in the column. Then, subsets of diverse attributes up
to a 𝑠𝑖𝑧𝑒_𝑚𝑎𝑥 size are generated in a greedy manner.

Note that both correlation and diversity are computed on-the-fly
on the results of the initial user query.

3.2 Generating Query Recommendations
Result Clustering. For each subset of attributes identified by the
first step, PyExplore clusters the initial query results using the
values of the attributes in the subset. It uses two options. The first
is K-means with scaling and encoding categorical values as dummy
variables, as proposed in [17]. However, encoding categorical values
as dummy variables can lead to increased time and space complexity
for data sets with high-cardinality categorical values. To overcome
this problem, PyExplore uses K-modes [7]. Specifically, to enable
the clustering of categorical data in a fashion similar to k-means,
the algorithm proposed in [6] uses a simple matching dissimilarity
measure, replaces the means of clusters with modes, and uses a
frequency-based method to update modes in the clustering process
to minimise the clustering cost function. The algorithm proposed
in [8], through the definition of a combined dissimilarity measure,
further integrates the k-means and the algorithm presented in [6]
to allow for clustering objects described by mixed numeric and
categorical attributes. Note that algorithms such as OPTICS are
very slow for this phase, and hencewere not selected. The parameter
2https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
3https://en.wikipedia.org/wiki/Correlation_ratio
4https://en.wikipedia.org/wiki/Hierarchical_clustering
5https://en.wikipedia.org/wiki/Entropy_(information_theory)
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𝑘 , i.e., the number of clusters, can be specified by the user, while
we investigate existing solutions for automatically determining 𝑘 .
One important challenge here is scaling to large data sets.

Query Generation. For each subset, the resulting cluster labels
are fed into a decision tree classifier to produce the split points of the
data. The resulting split points are used to create the recommended
SQL queries. More concretely, PyExplore traverses the decision tree
from the leaves up to the root, and for each path from the starting
leaf to the root, it generates an output query. The conditions of the
WHERE clause of each query describe the cluster boundaries as
they are described by each path in the decision tree.

Since PyExplore uses clustering to obtain partitions of the data
space, it leverages clustering quality metrics to obtain a ranking of
the produced recommended queries. Specifically, it uses density as
a quality metric for clustering, defined as follows:

𝑠𝑐𝑜𝑟𝑒 = 𝑏𝑒𝑡𝑤𝑒𝑒𝑛𝑠𝑠
𝑡𝑜𝑡𝑠𝑠

where 𝑏𝑒𝑡𝑤𝑒𝑒𝑛𝑠𝑠 is the between-cluster sum of squares and
𝑡𝑜𝑡𝑠𝑠 is the total sum of squares. 𝑏𝑒𝑡𝑤𝑒𝑒𝑛𝑠𝑠 can also be written as
𝑏𝑒𝑡𝑤𝑒𝑒𝑛𝑠𝑠 = 𝑡𝑜𝑡𝑠𝑠 − 𝑤𝑖𝑡ℎ𝑖𝑛𝑠𝑠 where 𝑤𝑖𝑡ℎ𝑖𝑛𝑠𝑠 is the total within-
cluster sum of squares. Higher density score is better, meaning that
the respective query describes a very dense area of the data.

3.3 Handling Textual Data
For finding interesting subsets of textual attributes, PyExplore treats
each query attribute as a document. Then, these are mapped to
numeric vectors using one of the following options:
• CountVectorizer [14] creates a histogram for each document.
• TF-IDF [14] essentially scales the histogram of the document by
the number of documents in the corpus that contain the word,
which aims to weigh down words that appear frequently in all
the documents.

• doc2vec [10] utilizes word2vec [12] to create numerical repre-
sentations of documents while still retaining their semantic
properties. By using doc2vec, the similarity metric encapsulates
the meaning of the words.

In our tests, doc2vec provided the best results because it determines
relations between words of the attributes and not just frequencies.

Next, for the query generation, each row in the initial query results
is treated as a separate document. For the clustering, any of the three
above-mentioned vectorization algorithms can be used to transform
each row to a vector representation. K-means is used for clustering.

To make the features of the decision tree interpretable, we use
a CountVectorizer to vectorize the dataset for the decision tree.
CountVectorizer essentially returns a histogram for each row. Using
the vocabulary and the features of the splits, PyExplore creates the
query recommendations based on the textual data. More specifically,
we take the split points from the rules of the decision tree and
decide whether we add the feature into a LIKE clause or a NOT
LIKE clause. Features that appear as splits with histogram values
less than 1 are added in a NOT LIKE clause; splits with histogram
values equal or greater than 1 are added in a LIKE clause. However,
since we concatenate each row to produce a single document, we
do not know anymore to which attribute the feature corresponds.
To address that, a post-processing step looks into the set of words
of each attribute and determines to which attribute each feature
corresponds with the help of indexing.

Another problem that might arise is for data sets with large
vocabulary size. Both the CountVectorizer and TF-IDF produce
sparse matrices. Both the K-Means implementation and the De-
cision tree classifier can handle sparse datasets so memory con-
sumption should not be a problem even for large vocabulary sizes.
doc2vec produces features of bounded size so vocabulary size is
not a problem. So if the vocabulary size is large the user could use
doc2vec for subset selection and clustering. Only the last part of the
algorithm that requires CountVectorizer could present a problem
in terms of execution time for large vocabulary sizes.

3.4 Dealing with Large Data Sets
PyExplore uses sampling, precomputing the vectorization model,
and an approximate workflow to deal with large datasets.
• The user can use sampling on rows and columns of the dataset
to speed up execution of PyExplore.

• Precomputing the doc2vec model can significantly improve the
execution time of workflows using it.

• There is an approximate version of the PyExplore workflow,
where the clustering step is performed by Mini-Batch K-means
[16] and the decision tree classifier uses Hoeffding Trees [3].

4 PYEXPLORE UI
The PyExplore UI offers the user an interactive way to explore data
sets. Figure 1 shows example screenshots. The user can start with a
data set and a query 1○. PyExplore returns query recommendations
along with their score 2○. The user can select to see how the query
results are clustered for each subset of attributes selected by the
algorithm 3○. The user can execute a recommended query. The
tool shows the first N (default value is 10) rows of the results of
the query 4○. The user can use a recommended query as a basis to
ask for new recommendations and go deeper in the data. At any
point, the user can visit their history of queries and pick a query to
follow a different exploration path 5○. The tool allows the user to
modify the output of the recommendation algorithm by specifying
the number of attributes, the number of recommendations, as well
as try different algorithms and different types of recommendations
based on mixed numerical and categorical or textual data.

5 DEMONSTRATION
Datasets. We have integrated several datasets, which will be used
during the demonstration: (a) The movies dataset from Kaggle6
provides information about the gross earnings of movies; (b) The
IBM Car sales dataset7 contains data about car sales; (c) The Intel
dataset 8 contains information from sensors in the Intel Berkeley lab;
(d) The CORDIS dataset9 contains projects and related organisations
funded by the European Union under the Horizon 2020 framework
programme; (e) the SDSS dataset 10 contains astrophysics data.

Each data set offers different opportunities and challenges for
recommendations. In our demonstration, we will use these data sets

6https://www.kaggle.com/rounakbanik/the-movies-dataset/version/7#movies_metadata.csv
7https://www.kaggle.com/thatbrock/ibm-watson-saleswinloss
8http://db.csail.mit.edu/labdata/labdata.html
9https://data.europa.eu/euodp/en/data/dataset/cordisH2020projects
10http://skyserver.sdss.org/dr16/en/home.aspx
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Figure 1: Example with the CORDIS data set.

Figure 2: Example with the SDSS data set.

Figure 3: Example with textual data on the IBM data set.

to show how query recommendations work, and show a variety of
interesting examples. Participants will be able to try recommenda-
tions on different data sets and ‘play’ with the algorithm parameters
to receive different recommendations.

Demo Examples. Example cases include:
Example 1: We start the exploration of the PhotoPrimary table

of the SDSS dataset. This dataset is entirely numeric. Our aim is to
find interesting regions in the sky. Interestingly enough, PyExplore
suggests a region that is close to the one provided in one of the
queries of the SDSS documentation11. In Figure 2, we can see the

11http://skyserver.sdss.org/dr8/en/help/docs/realquery.asp

correlation matrix between the attributes and the ability for the user
to execute the queries provided by the recommendation system.

Example 2: We start with a query on the CORDIS dataset. In this
case, we will see how PyExplore handles categorical and numerical
attributes in a real-life data set. In Figure 1, we see some recom-
mendations on ec_fund_scheme and framework_program, which are
categorical, and ec_max_contribution, which is numerical.

Example 3: On the IBM Sales data set, we will use the String
workflow. Clicking the button “String Options", we can modify the
workflow parameters. We will run two variations one using TF-
IDF for dataset vectorization and one using doc2vec, and compare
the results. In Figure 3, we see some example recommendations
produced by PyExplore using the textual attributes Competitor Type,
Supplies Group, and Region. We can see that PyExplore suggests
interesting values such as "Pacific" for Region.

Example 4: PyExplore offers a large number of opportunities
to experiment and evaluate recommendations. For example, we
will compare recommendations based on correlations vs diversity,
choose different clustering algorithms e.g., using OPTICS instead
of the hierarchical clustering to exclude non-correlated attributes,
see the impact of doc2vec in the quality of recommendations for
textual data, and so forth.
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