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ABSTRACT

The question of answering queries over ML predictions has been
gaining attention in the database community. This question is chal-
lenging because finding high quality answers by invoking an oracle
such as a human expert or an expensive deep neural network model
on every single item in the DB and then applying the query, can be
prohibitive. We develop a novel unified framework for approximate
query answering by leveraging a proxy to minimize the oracle us-
age of finding high quality answers for both Precision-Target (PT)
and Recall-Target (RT) queries. Our framework uses a judicious
combination of invoking the expensive oracle on data samples and
applying the cheap proxy on the DB objects. It relies on two as-
sumptions. Under the Proxy Quality assumption, we develop two
algorithms: PQA that efficiently finds high quality answers with
high probability and no oracle calls, and PQE, a heuristic extension
that achieves empirically good performance with a small number
of oracle calls. Alternatively, under the Core Set Closure assump-
tion, we develop two algorithms: CSC that efficiently returns high
quality answers with high probability and minimal oracle usage,
and CSE, which extends it to more general settings. Our extensive
experiments on five real-world datasets on both query types, PT
and RT, demonstrate that our algorithms outperform the state-of-
the-art and achieve high result quality with provable statistical
guarantees.
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1 INTRODUCTION

Several applications at the frontier of databases (DBs) and machine
learning (ML) require support for query processing over ML mod-
els. In image retrieval for instance, querying a DB corresponds to
finding images whose neural representations are close to an input
query image, given a distance measure [28, 29]. Similarly, in the
medical domain, a typical query would look for patients whose
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Figure 1: Query over ML predictions in medical domain.

predicted clinical condition is similar to an input patient (see Figure
1) using a Deep Neural Network (DNN) [27, 44]. A straightforward
way of answering these queries is to apply the neural models ex-
haustively on all objects (e.g., images or patients) in the DB, and
then return the objects that satisfy the query. This is prohibitive
because applying DNNs and involving human expertise are both
expensive. In this paper, we propose an approximate query processing
approach with provable guarantees that leverages a cheap proxy for
the neural model and uses a judicious combination of invoking the
expensive oracle model on data samples and applying the cheap
proxy on the DB.

The main focus of query processing over ML models has been
to ensure efficiency without compromising accuracy [51]. One line
of work, query inference, provides native relational support for ML
operators using containerized solutions such as Amazon Aurora,1
or in-application solutions such as Google’s BigQuery ML2 and
Microsoft’s Raven [30]. Another line develops adaptive predictions
for NNs by pruning examples based on their classification in early
layers [9]. Our aim is to enable queries in a way that is agnostic to
the underlying prediction model. Hence, we develop an in-application
approach where queries can be invoked on any ML prediction model.

Recent work [28, 29, 32, 37] proposes to use cheap proxy mod-
els that approximate ground truth oracle labels. Proxies are small
neural models that either provide a confidence score [29, 37, 49] or
distribution [32] for their predicted labels. Probabilistic predicates
(PP) [37] and CORE [49] employ light-weight proxies to filter out
unpromissing objects and empirically improve data reduction rates
in query execution plans. Probabilistic Top-K [32] trains proxy mod-
els to generate oracle label distribution and delivers approximate
Top-K solutions. Recently, in [29], the authors study queries with
1https://aws.amazon.com/fr/sagemaker/
2https://cloud.google.com/bigquery-ml/docs

ar
X

iv
:2

20
6.

02
84

5v
4 

 [
cs

.D
B

] 
 1

7 
N

ov
 2

02
2

https://doi.org/XX.XX/XXX.XX
https://github.com/DujianDing/AQUAPRO
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/XX.XX/XXX.XX
https://aws.amazon.com/fr/sagemaker/
https://cloud.google.com/bigquery-ml/docs


a minimum precision target (PT) or recall target (RT), and a fixed
user-specified budget on the number of oracle calls. However, (i)
setting an oracle budget is hard to get right. An underestimated
budget may lead to trivial answers while overestimation causes
unnecessary oracle usage, and (ii) setting only a minimum precision
or only a minimum recall target, runs the risk of returning valid
but uninformative answers: for RT, returning all objects in the DB
is valid but has very poor precision; for PT, returning the empty set
is valid but it has zero recall and is hence not useful in practice.

In this work, we consider oracle/proxy models with multi dimen-
sional outputs. We propose a more useful problem of minimizing
oracle usage for finding answers that meet a precision or recall tar-
get with provable statistical guarantees while achieving a maximal
complementary rate (CR). The CR for an RT (resp. PT) query is pre-
cision (resp. recall). More formally, given a PT (resp. RT) query, we
seek answers that (1) satisfy a target precision (resp. recall) with a
probability higher than a desired threshold and (2) incur a minimal
number of oracle calls, and (3) achieve the maximal CR subject to
the oracle usage incurred in (2). We aim to minimize oracle usage
since the oracle is significantly more expensive than the proxy.

Our problem raises three challenges: (1) identify high quality
answers with statistical guarantees, (2) design strategies that exactly
or approximately minimize oracle usage, and (3) achieve maximal
CR subject to (2). We develop a class of strategies that are agnostic to
the prediction model and are applicable both to RT and PT queries.
The key idea of our approach is to approximate an oracle with
a cheaper proxy model [28, 29]. In practice, the proxy could be a
smaller and lower latency neural model. We consider a general
pipeline for query answering which consists of three stages: (1)
apply proxy on the DB, (2) sample & probe with oracle, (3) compute
and return answers (see Figure 1). We instantiate our pipeline under
two alternative assumptions. Under the ProxyQuality assumption,
the proxy quality w.r.t. the oracle is quantified in a probabilistic
manner which allows us to return high quality answers right after
applying the proxy on the DB. We develop Algorithm PQA which
efficiently finds high probability valid answers of maximal expected
CR with zero oracle calls. We additionally design Algorithm PQE,
a heuristic extension to PQA, to calibrate the correlation between
the oracle and the proxy by incurring some oracle calls. If the
proxy quality is hard to quantify, we have the Core Set Closure
assumption under which we uniformly sample and probe a subset
of objects to estimate valid answers to a given query. We introduce
the notion of core set to find the optimal sample size and number
of samples so as to ensure a minimal expected oracle usage to
identify a valid answer with high probability. We use the proxy
to improve answer CR heuristically. This leads to Algorithm CSC,
which efficiently returns high probability valid answers with a
minimal expected number of oracle calls, and an empirically good
CR. We also design Algorithm CSE, a generalization of CSC, which
calibrates core sets with extra oracle calls and ensures high success
probability.

We conduct experiments on five real-world datasets and compare
our algorithms to four baselines from recent work: (1) SUPG [29],
(2) Top-K [32], a probabilistic Top-K approach that uses oracle
score distribution to deliver approximate Top-K answers, (3) Sam-
ple2Test, a sample-based baseline adapted from the literature [37],

and (4) Scan2Test, a simple baseline that returns answers by ap-
plying oracle on all objects, which is also compared with in [32].
Our experiments demonstrate that our algorithms find high qual-
ity answers with statistical guarantees even when baselines fail.
More specifically, we analyze PQA and verify the optimality of its
CR and success probability guarantee under the Proxy Quality
assumption. We compare PQA with Top-K on a synthetic dataset
and demonstrate that PQA returns high quality answers with zero
oracle call while Top-K incurs a huge oracle cost. We analyze CSC
to demonstrate its minimal oracle usage and success probability
guarantee under the Core Set Closure assumption. We compare
PQE, CSE, and baselines in terms of success probability and CR,
under various oracle settings. We find that for RT queries, CSE has
the best oracle efficiency and for PT queries, PQE is the most oracle
efficient approach. Finally, we study scalability and find that CSE is
the most efficient approach outperforming the strongest baseline
by up to 87.5%.

In sum, we make the following contributions.
• We propose the problem of answering PT and RT queries with

minimal oracle usage and maximal CR while meeting precision
or recall targets with high probability (§ 2).
• We propose two assumptions (ProxyQuality and Core Set
Closure), around which we develop four algorithms (PQA,
PQE, CSC, and CSE) to solve the problem efficiently (§ 4).
• We run extensive experiments on five real-world datasets (§ 5)

and show that: (i) our approaches yield valid answers with high
probability; (ii) our approaches significantly outperform the
state of the art w.r.t. CR and cost.
Complete details of proofs as well as additional experiments can

be found in the full version [19].

2 PROBLEM STUDIED

2.1 Use Cases

Example 1 (Image Retrieval). The problem is to find images
similar to a query image [14, 18, 50]. Metadata-based approaches
use textual descriptions of images for quickly measuring similarity,
but their quality heavily relies on image annotations [18]. Current
approaches for content-based image retrieval are built upon deep
neural networks which provide high accuracy but are computationally
expensive. Our goal is to support efficient high quality approximate
image retrieval queries [12].

Example 2 (Preventive Medicine). One of the greatest ob-
stacles of preventive medicine is the limited time a physician has
[1, 10, 36, 44]. Clinical Risk Prediction Models (CRPMs) are being
developed to facilitate decision-making. CRPMs serve as prognosis
prediction systems and predict the occurrence of specific diseases based
on personalized medical records. Our goal is to extend queries to in-
clude CRPMs while offering statistical guarantees [16, 34, 45].

Example 3 (Video Analytics). While DNNs have become ef-
fective for querying videos [42], their inference cost becomes pro-
hibitive as the model size increases. For example, to identify frames
with a given class (e.g., ambulance) on a month-long traffic video,
an advanced object detector such as YOLOv2 [43] needs about 190
GPU hours and $380 for a cloud service [25]. A specialized model can
achieve high efficiency, e.g., up to 340× faster than the full DNN, with
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sacrificed accuracy [28]. Our goal is to efficiently generate high qual-
ity query answers by balancing the use of expensive high-accuracy
models and cheap low-accuracy proxies [25, 28, 29].

2.2 Query

Our queries generalize Fixed-Radius Near Neighbor (FRNN) queries
[6]. Given a dataset 𝐷 , a query object 𝑞, a radius 𝑟 , and a distance
function 𝑑𝑖𝑠𝑡 , an FRNN query asks for all near neighbors of 𝑞 within
radius 𝑟 , i.e., 𝑁𝑁 (𝑞, 𝑟 ) = {𝑥 ∈ 𝐷 | 𝑑𝑖𝑠𝑡 (𝑥, 𝑞) ≤ 𝑟 }. In this paper,
we are mainly interested in near neighbors of objects w.r.t. latent
features, using a distance function defined on these features. In
preventivemedicine [1, 44], a latent featuremay be the infection risk
of a disease, which can be inferred from patient history, drug usage,
and demographics. Latent features can be discovered by human
experts [37] or powerful neural models, which we refer to as oracle,
denoted𝑂 . The near neighbors of query object 𝑞 w.r.t.𝑂 and radius
𝑟 are defined as 𝑁𝑁𝑂 (𝑞, 𝑟 ) = {𝑥 ∈ 𝐷 | 𝑑𝑖𝑠𝑡 (𝑂 (𝑥),𝑂 (𝑞)) ≤ 𝑟 }. We
will use the notation 𝑁𝑁𝑂 when the query object 𝑞 and radius 𝑟 are
clear from the context. An object 𝑥 ∈ 𝐷 is an oracle neighbor of a
query object w.r.t. radius 𝑟 if 𝑥 ∈ 𝑁𝑁𝑂 . Retrieving the exact 𝑁𝑁𝑂

requires calling the oracle on every single object in the DB, which
is prohibitively expensive. Instead, we are interested in finding high
quality answers with high probability (w.h.p.).

For any subset 𝑆 ⊆ 𝐷 , we denote by 𝑁𝑆 = |𝑆∩𝑁𝑁𝑂 | the number
of oracle neighbors in 𝑆 . Define:

𝑀𝑝 (𝑆) = 𝑁𝑆/ |𝑆 | 𝑀𝑟 (𝑆) = 𝑁𝑆/ |𝑁𝑁𝑂 | (1)

A query specifies a user-given measure 𝑀 , which can be either
𝑀𝑝 for precision or𝑀𝑟 for recall, to measure answer quality, and a
target𝛾 ∈ (0, 1). In the former case, it is called a Precision-Target (PT)
query and in the latter, Recall-Target (RT) query. We call 𝐴𝑛𝑠 ⊆ 𝐷
a valid answer iff 𝑀 (𝐴𝑛𝑠) ≥ 𝛾 . For 𝑀 , we use 𝑀 to denote its
complementary rate (CR): when𝑀 = 𝑀𝑝 (resp.,𝑀𝑟 ),𝑀 stands for
𝑀𝑟 (resp.,𝑀𝑝 ). Given a query, we are interested in returning valid
answers w.h.p. For any 𝑆 ⊆ 𝐷 , the probability of success for 𝑀 (𝑆)
is 𝑃𝑜𝑆 (𝑆,𝑀,𝛾) := 𝑃𝑟 [𝑀 (𝑆) ≥ 𝛾]. We generalize FRNN queries to
Approximate Oracle-Sensitive FRNN (AOS-FRNN ) queries.

Definition 2.1 (AOS-FRNN Query). Given a dataset 𝐷 , a query
object 𝑞, a radius 𝑟 , a failure rate 𝛿 , a main measure 𝑀 and corre-
sponding target 𝛾 ∈ (0, 1), an AOS-FRNN query asks for a valid
answer 𝐴𝑛𝑠 ⊆ 𝐷 w.h.p., i.e., such that 𝑃𝑜𝑆 (𝐴𝑛𝑠,𝑀,𝛾) ≥ 1 − 𝛿 .

Effectively processing anAOS-FRNNquery requires determining:
(1) How many oracle calls are required to find a valid answer w.h.p.?
and (2) How good is the returned answer under a given CR? The
first question is important since oracle invocations are expensive
and must be reduced. The second question is important because a
technically valid answer could be uninformative. For instance, if a
user specifies𝑀 = 𝑀𝑝 with a high target 𝛾 , the empty set is always
a valid answer. Similarly, returning (nearly) the whole dataset is
always a valid answer when𝑀 = 𝑀𝑟 .

Problem 1 (AOS-FRNN Problem). Given a dataset 𝐷 and an
AOS-FRNN query 𝑄 , find a valid answer 𝐴𝑛𝑠 ⊆ 𝐷 to 𝑄 w.h.p. such
that (i) the number of oracle calls incurred is minimal and (ii) the
complementary rate𝑀 (𝐴𝑛𝑠) achieved is maximal subject to (i).

The AOS-FRNN Problem is challenging given that we want to
optimize two objectives (i.e., oracle usage and CR) under validity
and success probability constraints. We will show that under certain
conditions, we can efficiently return high probability valid answers
with minimal or zero oracle calls and maximal expected CR.

3 APPROACH OVERVIEW

The key idea of our approach is to approximate an oracle with a
cheaper proxy model [28, 29]. In practice, compared to an expensive
oracle 𝑂 , a proxy 𝑃 could be a smaller and lower latency neural
model. For brevity, when a query object 𝑞 is clear from the context,
we use 𝑑𝑖𝑠𝑡𝑃 (𝑥) (resp. 𝑑𝑖𝑠𝑡𝑂 (𝑥)) to denote 𝑑𝑖𝑠𝑡 (𝑃 (𝑥),𝑂 (𝑞)) (resp.
𝑑𝑖𝑠𝑡 (𝑂 (𝑥),𝑂 (𝑞))), for any 𝑥 ∈ 𝐷 .

Given a dataset 𝐷 , define an index function 𝐼 : 𝐷 → {𝑖 | 1 ≤ 𝑖 ≤
|𝐷 |} that enumerates data objects in increasing order of their proxy
distance, i.e., ∀𝑥𝑖 , 𝑥 𝑗 ∈ 𝐷 , 𝐼 (𝑥𝑖 ) ≤ 𝐼 (𝑥 𝑗 ) if 𝑑𝑖𝑠𝑡𝑃 (𝑥𝑖 ) ≤ 𝑑𝑖𝑠𝑡𝑃 (𝑥 𝑗 ).
Denote by 𝐷𝑘 = {𝑥 ∈ 𝐷 | 1 ≤ 𝐼 (𝑥) ≤ 𝑘} the 𝑘 nearest neighbors
of the query object w.r.t. the proxy distance. 𝐷0 is the empty set.
Given a query object 𝑞, for 𝑥 ∈ 𝐷 , we say that 𝑘 is the proxy index
of 𝑥 if 𝑘 = 𝐼 (𝑥). In this case, we call 𝐷𝑘 the proxy prefix of 𝑥 .

To solve the AOS-FRNN Problem with guarantees, we examine
two alternative assumptions:

Assumption 1 (Proxy Quality): When the proxy quality w.r.t.
the oracle can be quantified in a probabilistic manner, we aim
to find high probability valid answers of maximal expected CRs
with no oracle calls. We develop Algorithm PQA to do that. For
𝑥 ∈ 𝐷 , PQA assumes the conditional probability of 𝑑𝑖𝑠𝑡𝑂 (𝑥), given
𝑑𝑖𝑠𝑡𝑃 (𝑥). We can show that this assumption holds as long as data is
i.i.d. (see § 4.1.1). This allows it to compute the success probability
𝑃𝑜𝑆 (𝑆,𝑀,𝛾) and expected CR E[𝑀 (𝑆)] for any answer 𝑆 ⊆ 𝐷 .
We prove that the optimal answer to any given query is 𝐷𝑘∗ for
some 0 ≤ 𝑘∗ ≤ |𝐷 |. The optimal answer satisfies validity w.h.p.
and has maximal expected CR. As 𝑘∗ is not known a priori, we
explore the monotonicity of 𝑃𝑜𝑆 (𝐷𝑘 , 𝑀,𝛾) and E[𝑀 (𝐷𝑘 )] w.r.t. 𝑘
in order to efficiently identify 𝐷𝑘∗ . For RT queries, 𝑃𝑜𝑆 (𝐷𝑘 , 𝑀,𝛾)
monotonically increases as 𝑘 increases. We use binary search to
identify the smallest𝑘 = 𝑘 such that 𝑃𝑜𝑆 (𝐷𝑘 , 𝑀,𝛾) ≥ 1−𝛿 . Next, we
find 𝑘 ≤ 𝑘 = 𝑘∗ ≤ |𝐷 | which maximizes E[𝑀 (𝐷𝑘 )] and return 𝐷𝑘∗

as the answer. For PT queries, E[𝑀 (𝐷𝑘 )] monotonically increases
as 𝑘 increases. Thus, we incrementally compute 𝑃𝑜𝑆 (𝐷𝑘 , 𝑀,𝛾) for
0 ≤ 𝑘 ≤ |𝐷 | and set 𝑘∗ as the largest 𝑘 s.t. 𝑃𝑜𝑆 (𝐷𝑘 , 𝑀,𝛾) ≥ 1 − 𝛿 .
We return𝐷𝑘∗ as the answer. It is easy to see that𝐷𝑘∗ is the optimal
answer and no oracle call is invoked in computing it.

Example 4. A (synthetic) illustrative example is shown in Figure
2.3 Consider a dataset 𝐷 = {𝑥1, 𝑥2, · · · , 𝑥9}. We show how to use PQA
to solve the example RT and PT queries with 𝛾 = 0.9, 𝛿 = 0.1 and a
ground truth𝑁𝑁𝑂 = {𝑥1, 𝑥2, 𝑥3, 𝑥5}. We first compute proxy distance
𝑑𝑖𝑠𝑡𝑃 (𝑥𝑖 ) for each 𝑥𝑖 ∈ 𝐷 and derive the oracle distance distribution
𝑃𝑟 [𝑑𝑖𝑠𝑡𝑂 (𝑥𝑖 ) |𝑑𝑖𝑠𝑡𝑃 (𝑥𝑖 )] according to our assumption, which allows
us to compute 𝑃𝑜𝑆 (𝑆,𝑀,𝛾) and E[𝑀 (𝑆)] for any 𝑆 ⊆ 𝐷 . We want
to efficiently find the optimal answer 𝐷𝑘∗ . In this example, 𝐼 (𝑥𝑖 ) = 𝑖
and 𝐷𝑘 = {𝑥1, 𝑥2, · · · , 𝑥𝑘 }. For the RT query, we use binary search
to find 𝑘 = 5, i.e., the smallest 𝑘 satisfying 𝑃𝑜𝑆 (𝐷𝑘 , 𝑀𝑟 , 𝛾 = 0.9) ≥

3All numbers are synthetic and are used to illustrate the operational workflow of our
algorithms. We provide details of each computational step in § 4.
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Figure 2: Example RT and PT query solved by PQA with

𝑁𝑁𝑂 = {𝑥1, 𝑥2, 𝑥3, 𝑥5}, 𝛾 = 0.9, and 𝛿 = 0.1.

Figure 3: Example RT and PT query solved by CSC with

𝑁𝑁𝑂 = {𝑥1, 𝑥2, 𝑥3, 𝑥5}, 𝛾 = 0.9, and 𝛿 = 0.1.

1−𝛿 = 0.9. Next, we compute expected precision and return 𝐷5 as the
answer since E[𝑀𝑝 (𝐷5)] = 0.75 ≥ E[𝑀𝑝 (𝐷𝑘 )] for any 𝑘 ≤ 𝑘 ≤ |𝐷 |.
For the PT query, we compute 𝑃𝑜𝑆 (𝐷𝑘 , 𝑀𝑝 , 𝛾 = 0.9) for 0 ≤ 𝑘 ≤ |𝐷 |
and return 𝐷3 as the answer since 𝑘 = 3 is the largest 𝐷𝑘 satisfying
𝑃𝑜𝑆 (𝐷𝑘 , 𝑀𝑝 , 𝛾 = 0.9) ≥ 1 − 𝛿 = 0.9.
Assumption 2 (Core Set Closure): When the proxy quality is
hard to quantify, we aim to find 𝑘∗ s.t. 𝐷𝑘∗ is the optimal answer.
Since computing 𝑘∗ exactly is expensive, we estimate it by sample
and probe. Specifically, we uniformly draw𝑚 samples of size 𝑠 each,
from 𝐷 to estimate 𝑘∗ as 𝑘S where S is the union of samples, and
return 𝐷𝑘S as the answer. For RT (resp. PT) queries, we set 𝑘S as
the largest (resp. smallest) 𝐼 (𝑥), where 𝑥 is an oracle neighbor in
S. We seek the optimal values 𝑠 = 𝑠∗ and𝑚 = 𝑚∗ which ensure
𝑃𝑜𝑆 (𝐷𝑘S , 𝑀,𝛾) ≥ 1 − 𝛿 with a minimal expected number of oracle
calls. For that, we introduce the notion of core set, denoted𝐶 . Given
a query, the core set comprises all oracle neighbors 𝑥 ∈ 𝑁𝑁𝑂

whose proxy prefix 𝐷𝐼 (𝑥) is a valid answer. We say the core set is
closed w.r.t. a query 𝑄 if one of the following holds: (i) 𝑄 is a RT
query and for every 𝑥 ∈ 𝐶 any oracle neighbor whose proxy index
is larger than that of 𝑥 is also in 𝐶; or (ii) 𝑄 is a PT query and for

Figure 4: Workflow of different approaches.

Success Prob. Oracle Usage CR Assumption
PQA ≥ 1 − 𝛿 0 MAX Yes
CSC ≥ 1 − 𝛿 MIN good Yes
CSE ≥ 1 − 𝛿 small good No
PQE high small good No

Table 1: Performance of different approaches for queries

with specified 𝛿 . Provable guarantees are highlighted. Em-

pirical performance is described by “high”, “small”, and

“good”.

every 𝑥 ∈ 𝐶 any oracle neighbor whose proxy index is smaller than
that of 𝑥 is also in𝐶 . Let 𝑐 denote the size of a given core set𝐶 . We
show that if the core set𝐶 is closed w.r.t. a query and 𝑐 is known, 𝑠∗
and𝑚∗ can be found by solving an optimization problem with 𝑐 as
the input (§ 4.2). We develop Algorithm CSC to efficiently solve this
problem and return 𝐷𝑘S . CSC returns valid answers w.h.p. with a
minimal expected oracle usage and empirically good CR.

Example 5. The (synthetic) example in Figure 3 illustrates the idea
behind Algorithm CSC. Consider the same setting as in Figure 2, where
𝐷 = {𝑥1, 𝑥2, · · · , 𝑥9}, and RT and PT queries with 𝛾 = 0.9, 𝛿 = 0.1,
ground truth 𝑁𝑁𝑂 = {𝑥1, 𝑥2, 𝑥3, 𝑥5}, and 𝐷𝑘 = {𝑥1, 𝑥2, · · · , 𝑥𝑘 }. For
the RT query, 𝑥5 is the only oracle neighbor whose proxy prefix is a
valid answer. Therefore, 𝐶 = {𝑥5} and 𝐶 is closed. We can derive the
optimal values 𝑠∗ = 3 and𝑚∗ = 2, and uniformly draw samples 𝑆1, 𝑆2
from 𝐷 . We then apply oracle on each 𝑥𝑖 ∈ S = 𝑆1 ∪ 𝑆2 and compute
𝑑𝑖𝑠𝑡𝑂 (𝑥𝑖 ) accordingly. At the end, we set 𝑘S = 5 and return 𝐷5 as
the answer since 𝑥5 has the largest proxy index among sampled oracle
neighbors 𝑥1, 𝑥2, 𝑥5. For the PT query, the core set is 𝐶 = {𝑥1, 𝑥2, 𝑥3},
which is closed. Similarly, we first derive the optimal values 𝑠∗ = 2
and𝑚∗ = 2, and draw 𝑆1, 𝑆2 accordingly. Next, we apply the oracle
on samples and compute the corresponding oracle distance. At the end,
we set 𝑘S = 2 and return 𝐷2 as the answer since 𝑥2 has the smallest
proxy index among sampled oracle neighbors 𝑥2, 𝑥3.

In case these assumptions do not hold, we develop PQE and CSE.
PQE is a heuristic extension to PQAwhich calibrates oracle distance
distribution by incurring some oracle calls. CSE complements CSC
and ensures high success probability in general. The workflow and
performance of all four approaches are summarized in Figure 4 and
Table 1.

We will use𝑀 and𝑀 when results hold for both PT and RT. We
next describe our algorithms and provide a theoretical analysis.

4 FORMAL ANALYSIS AND ALGORITHMS

4.1 Proxy Quality

In § 4.1.1, we formally state the Proxy Quality assumption and
show how the success probability of a set 𝑆 ⊆ 𝐷 can be computed.
Then, we develop Algorithm PQA based on this assumption (§ 4.1.2)
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Table 2: Notation Summary

Symbol Description Symbol Description

𝑑𝑖𝑠𝑡𝑂 (𝑥) oracle distance 𝑟 radius threshold
𝑑𝑖𝑠𝑡𝑃 (𝑥) proxy distance 𝐶 , 𝑐 core set (size)
𝑁𝑁𝑂 oracle neighbors in DB 𝛿 failure rate
𝑁𝑆 # oracle neighbors in 𝑆 𝐼 (𝑥) proxy index of 𝑥

𝑀 ,𝑀 main/comp. measure 𝑀𝑝 ,𝑀𝑟 precision/recall
𝐷𝑘 𝑘 proxy-nearest neighbors 𝛾 measure target

𝑘∗ proxy index 𝐼 (𝑥) of 𝑥 ∈ 𝐷 , s.t. 𝐷𝐼 (𝑥 ) is the optimal answer.
𝑘S max (resp. min) 𝐼 (𝑥) of 𝑥 ∈ S ∩ 𝑁𝑁𝑂 for RT (resp. PT) queries.

Figure 5: Distribution of 𝜖𝑖 = 𝑑𝑖𝑠𝑡
𝑂 (𝑥𝑖 ) − 𝑑𝑖𝑠𝑡𝑃 (𝑥𝑖 ).

and analyze answer optimality (§ 4.1.3). In § 4.1.4, we develop
Algorithm PQE to extend PQA to more general settings.

4.1.1 Proxy Quality Assumption. In many real-world applications,
data is collected in i.i.d. manner [32, 37]. In our problem setting, the
oracle and proxy are provided as input and serve as deterministic
functions mapping a data object 𝑥𝑖 ∈ 𝐷 to its prediction 𝑂 (𝑥𝑖 )
or 𝑃 (𝑥𝑖 ). The difference between oracle and proxy distances to a
given query object can be seen as i.i.d. random variables, whose
i.i.d. property comes from the underlying data collection process.
Formally, the assumption states that given a query, the deviations
between the proxy and oracle distances of different objects 𝑥𝑖 ∈ 𝐷
are i.i.d. random variables: for 𝑥𝑖 ∈ 𝐷, 𝜖𝑖 = 𝑑𝑖𝑠𝑡𝑂 (𝑥𝑖 ) − 𝑑𝑖𝑠𝑡𝑃 (𝑥𝑖 ),
where 𝜖𝑖 are i.i.d., 𝜖𝑖 ∼ X. In Figure 5 we report the distribution of
𝜖𝑖 on two real-world datasets, Mimic-III [26] and night-street [11].
It is clear that, with high frequency, 𝜖𝑖 takes on values close to 0,
which indicates that the proxy is of good quality and can properly
approximate the oracle predictions.

Under this assumption, we can compute the oracle distance
distribution for any 𝑥𝑖 ∈ 𝐷 , after observing the proxy distance. The
conditional probability of 𝑥𝑖 ∈ 𝐷 being an oracle neighbor is:

𝑃𝑟 [𝑥𝑖 ∈ 𝑁𝑁𝑂 | 𝑑𝑖𝑠𝑡𝑃 (𝑥𝑖 ) ] = 𝑃𝑟 [𝑑𝑖𝑠𝑡𝑂 (𝑥𝑖 ) ≤ 𝑟 | 𝑑𝑖𝑠𝑡𝑃 (𝑥𝑖 ) ]

= 𝑃𝑟 [𝜖𝑖 ≤ 𝑟 − 𝑑𝑖𝑠𝑡𝑃 (𝑥𝑖 ) ]
(2)

The RHS of Eq. 2 is the cdf of 𝜖𝑖 ∼ X evaluated at 𝑟 − 𝑑𝑖𝑠𝑡𝑃 (𝑥𝑖 ),
i.e.,𝐶𝐷𝐹X (𝑟 −𝑑𝑖𝑠𝑡𝑃 (𝑥𝑖 )). For simplicity, define 𝜙 (𝑥𝑖 ) := 𝐶𝐷𝐹X (𝑟 −
𝑑𝑖𝑠𝑡𝑃 (𝑥𝑖 )) and Φ(𝐷) := {𝜙 (𝑥𝑖 ) | 𝑥𝑖 ∈ 𝐷}. Notice, 𝜙 (𝑥𝑖 ) provides
the probability that 𝑥𝑖 is an oracle neighbor. The overall success
probability uses the possible world semantics [39]. The success proba-
bility of a subset 𝑆 ⊆ 𝐷 equals the sum of probabilities of all possible
worlds in which 𝑆 has a high precision or recall w.r.t. the target 𝛾 .
To compute the success probability of 𝑆 , we seek the likelihood of
any 𝑆 ⊆ 𝐷 containing a certain number of oracle neighbors.

Recall that for any subset 𝑆 ⊆ 𝐷 , 𝑁𝑆 = |𝑆 ∩𝑁𝑁𝑂 | is the number
of oracle neighbors in 𝑆 . 𝑁𝑆 is thus a random variable equal to
the sum of |𝑆 | independent Bernoulli trials, each of which has a
success probability 𝜙 (𝑥𝑖 ), 𝑥𝑖 ∈ 𝑆 . Let 𝑝𝑁𝑆

(𝑘) := 𝑃𝑟 [𝑁𝑆 = 𝑘] be the

probability mass function for any 𝑆 ⊆ 𝐷 and 0 ≤ 𝑘 ≤ |𝑆 |. We next
discuss how to compute it efficiently.

An important fact is that, given 𝑆 ⊆ 𝐷 , 𝑥𝑖 ∉ 𝑆 , 𝑝𝑁𝑆∪{𝑥𝑖 }
and 𝑝𝑁𝑆

satisfy the following recurrence relation:
𝑝𝑁𝑆∪{𝑥𝑖 }

(𝑘) = 𝑝𝑁𝑆
(𝑘 − 1) · 𝜙 (𝑥𝑖 ) + 𝑝𝑁𝑆

(𝑘) · (1 − 𝜙 (𝑥𝑖 )) (3)

for 0 ≤ 𝑘 ≤ |𝑆 | + 1. Eq. 3 says how to compute the probability
mass function 𝑝𝑁𝑆∪{𝑥𝑖 }

from 𝑝𝑁𝑆
, for any 𝑆 ⊆ 𝐷 and 𝑥𝑖 ∉ 𝑆 . This

recurrence relation directly suggests a way to compute 𝑝𝑁𝑆
for any

𝑆 with incremental updates, called direct convolution [8]. We start
from 𝑆 = ∅ and apply Eq. 3 recursively to compute 𝑝𝑁𝑆

for any
𝑆 ⊆ 𝐷 . 𝑝𝑁𝑆

is implemented by an array (we abbreviate 𝜙 (𝑥𝑖 ) as
𝜙𝑖 ). We initialize the array 𝑝𝑁𝑆

[0] = 1. We then iteratively update
𝑝𝑁𝑆

by including 𝑥𝑖 ∈ 𝑆 , 1 ≤ 𝑖 ≤ |𝑆 |, in any order. The distribution
updates are a direct implementation of Eq. 3.

We now discuss how to use 𝑝𝑁𝑆
to compute 𝑃𝑜𝑆 (𝑆,𝑀,𝛾), the

success probability for 𝑆 to be a valid answer. We have the following
fact, where 𝑆 := 𝐷 \ 𝑆 :

Fact 1. Given 𝑆 ⊆ 𝐷 and 𝛾 ∈ (0, 1),
𝑃𝑜𝑆 (𝑆,𝑀𝑝 , 𝛾 ) = 𝑃𝑟 [𝑁𝑆

|𝑆 | ≥ 𝛾 ] =
|𝑆 |∑︁

𝑘=⌈|𝑆 |𝛾 ⌉
𝑝𝑁𝑆
(𝑘) (4)

𝑃𝑜𝑆 (𝑆,𝑀𝑟 , 𝛾 ) = 𝑃𝑟 [ 𝑁𝑆

|𝑁𝑁𝑂 |
≥ 𝛾 ] =

|𝑆 |∑︁
𝑗=0

𝑝𝑁𝑆
( 𝑗)
⌊ 𝑗 (1−𝛾 )/𝛾 ⌋∑︁

𝑘=0
𝑝𝑁

𝑆
(𝑘) (5)

For PT queries, the precision of 𝑆 ⊆ 𝐷 increases as 𝑆 contains
more oracle neighbors. The probability of 𝑆 having a precision no
less than 𝛾 equals the probability of 𝑆 containing at least |𝑆 |𝛾 oracle
neighbors, i.e., 𝑃𝑟 [𝑁𝑆 ≥ |𝑆 |𝛾]. Eq. 4 gives this probability.

For RT queries, the recall of 𝑆 ⊆ 𝐷 increases as 𝑆 contains more
oracle neighbors relative to the complement 𝑆 = 𝐷 \ 𝑆 : if 𝑆 contains
0 ≤ 𝑗 ≤ |𝑆 | oracle neighbors, the conditional probability of 𝑆 hav-
ing a recall no less than 𝛾 equals the probability that 𝑆 contains no
more than 𝑗 (1 − 𝛾)/𝛾 oracle neighbors, i.e., 𝑃𝑟 [𝑁

𝑆
≤ 𝑗 (1 − 𝛾)/𝛾].

By the law of total probability [22], the overall success probability
𝑃𝑜𝑆 (𝑆,𝑀𝑟 , 𝛾) equals the summation of the product between the
conditional success probability, 𝑃𝑟 [𝑁

𝑆
≤ 𝑗 (1 − 𝛾)/𝛾], and the mar-

ginal probability, 𝑃𝑟 [𝑁𝑆 = 𝑗], 0 ≤ 𝑗 ≤ |𝑆 |. Using Eq. 5, we use 𝑝𝑁𝑆

and 𝑝𝑁
𝑆
to compute this probability.

Fact 1 gives a direct way to compute 𝑃𝑜𝑆 (𝑆,𝑀,𝛾) for any 𝑆 ⊆ 𝐷
for a given query. We also leverage Eq. 4 and Eq. 5 iteratively.

4.1.2 Algorithm PQA. We develop PQA (Algorithm 1) which re-
turns high probability valid answers with zero oracle calls and max-
imal expected CR, under the ProxyQuality assumption. For PT
queries, PQA-PT computes the largest 𝑘 s.t. 𝑃𝑜𝑆 (𝐷𝑘 , 𝑀𝑝 , 𝛾) ≥ 1−𝛿 ,
0 ≤ 𝑘 ≤ |𝐷 |, denoted 𝑘∗. Notice that 𝑃𝑜𝑆 (𝑆,𝑀𝑝 , 𝛾) can be derived
from 𝑝𝑁𝑆

in linear time, and 𝑝𝑁𝑆
can be computed from 𝑝𝑁𝑆\{𝑥𝑖 }

in linear time, for any 𝑥𝑖 ∈ 𝑆 ⊆ 𝐷 . PQA-PT incrementally com-
putes 𝑝𝑁𝐷𝑘

for each 0 ≤ 𝑘 ≤ |𝐷 | and 𝑃𝑜𝑆 (𝐷𝑘 , 𝑀𝑝 , 𝛾) accordingly.
At the end, PQA-PT returns 𝐷𝑘∗ where 𝑘∗ = max{0 ≤ 𝑘 ≤ |𝐷 | |
𝑃𝑜𝑆 (𝐷𝑘 , 𝑀𝑝 , 𝛾) ≥ 1−𝛿}. For RT queries, PQA-RT uses binary search
to identify the smallest 𝑘 = 𝑘 such that 𝑃𝑜𝑆 (𝐷𝑘 , 𝑀,𝛾) ≥ 1−𝛿 . Next,
PQA-RT computes the expected CR of 𝐷𝑘 for each 𝑘 ≤ 𝑘 ≤ |𝐷 |,
and returns 𝐷𝑘∗ where 𝑘∗ = argmax𝑘≤𝑘≤ |𝐷 | E[𝑀𝑝 (𝐷𝑘 )].

The algorithm is presented in Algorithm 1. PQA-PT is given
in lines 1-8. In lines 2-4, we incrementally compute 𝑝𝑁𝐷𝑘

for 0 ≤
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𝑘 ≤ |𝐷 |. In lines 6-8, we keep tracking the largest 𝑘 = 𝑘∗, 0 ≤
𝑘 ≤ |𝐷 |, such that 𝑃𝑜𝑆 (𝐷𝑘 , 𝑀𝑝 , 𝛾) ≥ 1 − 𝛿 , and return 𝐷𝑘∗ as the
answer. The overall time complexity is𝑂 ( |𝐷 |2). PQA-RT is given in
lines 9-26. In lines 10-18, we use binary search to find the smallest
𝑘 = 𝑘 such that 𝑃𝑜𝑆 (𝐷𝑘 , 𝑀𝑟 , 𝛾) ≥ 1 − 𝛿 . Next, in lines 20-26, we
compute E[𝑀𝑝 (𝐷𝑘 )] for each 𝑘 ≤ 𝑘 ≤ |𝐷 | and return 𝐷𝑘∗ with
the maximal expected CR. Binary search invokes𝑂 (𝑙𝑜𝑔( |𝐷 |)) times
𝑝𝑁𝑆

computation, each of which is of 𝑂 ( |𝐷 |2). The overall time
complexity is therefore 𝑂 (𝑙𝑜𝑔( |𝐷 |) |𝐷 |2).

Algorithm 1: PQA
1 Function PQA-PT(Φ𝐷 = Φ(𝐷) , 𝛾 , 𝛿) :
2 𝑝𝑁𝑆

[0] ← 1; 𝑘∗ ← 0
3 for 𝑖 ← 1, 2, · · · , |𝐷 | do
4 𝑝𝑁𝑆

← IncrementalUpdate(𝑝𝑁𝑆
, Φ𝐷 [𝑖 ], 𝑖) /* Eq.3 */

5 if PoS-Mp(𝑝𝑁𝑆
, 𝛾) ≥ 1 − 𝛿 /* Eq.4 */

6 then

7 𝑘∗ ← 𝑖

8 return 𝐷𝑘∗

9 Function PQA-RT(Φ𝐷 = Φ(𝐷) , 𝛾 , 𝛿) :
10 𝑘 ← 1; 𝑘 ← |𝐷 |
11 while 𝑘 < 𝑘 do

12 𝑚𝑖𝑑 ← ⌊(𝑘 + 𝑘)/2⌋
13 𝑝𝑁𝑆

← pNs(Φ(𝑆)); 𝑝𝑁
𝑆
← pNs(Φ(𝑆)) /* Eq.3 */

14 if PoS-Mr(𝑝𝑁𝑆
, 𝑝𝑁

𝑆
, 𝛾) < 1 − 𝛿 /* Eq.5 */

15 then

16 𝑘 ←𝑚𝑖𝑑 + 1
17 else

18 𝑘 ←𝑚𝑖𝑑

19 𝑝𝑁𝑆
← pNs(Φ(𝐷𝑘 ))

20 𝐸𝑀 ← Sum({𝑝𝑁𝑆
[𝑖 ] · 𝑖/𝑘 | 1 ≤ 𝑖 ≤ 𝑘 }) /* E[𝑀𝑝 (𝑆) ] */

21 for 𝑖 ← 𝑘 + 1, 𝑘 + 2, · · · , |𝐷 | do
22 𝑝𝑁𝑆

← IncrementalUpdate(𝑝𝑁𝑆
, Φ𝐷 [𝑖 ], 𝑖) /* Eq.3 */

23 𝐸𝑀
′ ← Sum({𝑝𝑁𝑆

[ 𝑗 ] · 𝑗/𝑖 | 1 ≤ 𝑗 ≤ 𝑖 })
24 if 𝐸𝑀

′
> 𝐸𝑀 then

25 𝐸𝑀 ← 𝐸𝑀
′; 𝑘∗ ← 𝑖

26 return 𝐷𝑘∗

4.1.3 PQA Optimality. We first show that there exists some 𝐷𝑘∗ ,
s.t. it is an optimal answer. We then explore the monotonicity rela-
tion between 𝐷𝑘 and 𝐷𝑘+1 w.r.t. success probability and expected
CR, to efficiently find 𝐷𝑘∗ . Finally, we show that answers returned
by PQA are optimal for any query (proofs in the full version [19]).

For 𝑆 ⊆ 𝐷 , we are interested in two operations to generate new
answers: (i) replace 𝑥𝑖 ∈ 𝑆 with 𝑥 𝑗 ∉ 𝑆 , and (ii) append 𝑆 with a
new object 𝑥 ∉ 𝑆 . We first show that for any 𝑆 ⊆ 𝐷 , both success
probability 𝑃𝑜𝑆 (𝑆,𝑀,𝛾) and expected CR E(𝑀 (𝑆)) are monotone
under the replacement operation.

Lemma 1 (Monotonicity of Replacement). Let 𝑆 ⊆ 𝐷 , 𝑥𝑖 ∈ 𝑆 ,
and 𝑥 𝑗 ∉ 𝑆 . Denote 𝑆 ′ = 𝑆 ∪ {𝑥 𝑗 } \ {𝑥𝑖 }. For all 𝛾 ∈ (0, 1), if
𝜙 (𝑥𝑖 ) ≤ 𝜙 (𝑥 𝑗 ), then

𝑃𝑜𝑆 (𝑆,𝑀,𝛾 ) ≤ 𝑃𝑜𝑆 (𝑆′, 𝑀,𝛾 ) and E[𝑀 (𝑆) ] ≤ E[𝑀 (𝑆′) ] (6)

Proof Sketch. The proof leverages the notion of usual stochas-
tic order [40]. □

Lemma 1 says that, given 𝑆 ⊆ 𝐷 , if we replace 𝑥𝑖 ∈ 𝑆 with 𝑥 𝑗 ∉ 𝑆 ,
where 𝑥 𝑗 is more likely to be an oracle neighbor, both the success
probability and the expected CR of 𝑆 will monotonically increase,
for a given query. Lemma 1 can be used to prune out a majority
of unpromising solutions in the early stage of query processing.
Specifically, given a query, we show that for any 0 ≤ 𝑘 ≤ |𝐷 |, 𝐷𝑘 is
optimal among all answers of size 𝑘 . Recall𝐷𝑘 is the set of 𝑘 nearest
neighbors of the query object w.r.t. the proxy distance. Formally,

Theorem 4.1. For all 𝛾 ∈ (0, 1), ∀0 ≤ 𝑘 ≤ |𝐷 |, 𝐷𝑘 has the highest
success probability and expected CR among all 𝑆 ⊆ 𝐷 with |𝑆 | = 𝑘 .

Theorem 4.1 entails that, given a query, there exists some 0 ≤
𝑘∗ ≤ |𝐷 | such that 𝐷𝑘∗ is guaranteed to be an optimal answer. We
study the append operation and have the following result.

Lemma 2 (Monotonicity of Append). For all 𝛾 ∈ (0, 1) and
0 ≤ 𝑘 ≤ |𝐷 | − 1,
𝑃𝑜𝑆 (𝐷𝑘 , 𝑀𝑟 , 𝛾 ) ≤ 𝑃𝑜𝑆 (𝐷𝑘+1, 𝑀𝑟 , 𝛾 ) E[𝑀𝑟 (𝐷𝑘 ) ] ≤ E[𝑀𝑟 (𝐷𝑘+1) ] (7)

Lemma 2 states that increasing 𝑘 leads to an increase both in the
probability for 𝐷𝑘 to have a high recall and its expected recall. In
other words, the success probability of 𝐷𝑘 monotonically increases
for RT queries, and the expected CR of 𝐷𝑘 monotonically increases
for PT queries, as 𝑘 increases.

By Theorem 4.1 and Lemma 2, for any given query, the answer
𝐷𝑘∗ returned by Algorithm PQA clearly has high success probability
and the maximal expected CR, implying it is an optimal answer.

4.1.4 Algorithm PQE. Recall that Algorithm PQA requires Φ(𝐷)
as an input. In a general setting, when Φ(𝐷) is unknown or Proxy
Quality Assumption does not hold, we heuristically fit a normal
distribution by sampling and probing on a limited number of objects,
where the limit is controlled by a budget parameter. The resulting
algorithm is PQE (Algorithm 2).

That is, in PQE, we employ 𝜖𝑖 ∼ N(𝜇, 𝜎) for all 𝑥𝑖 ∈ 𝐷 . Specifi-
cally, we choose 𝜇 = 0, which amounts to assuming that the proxy
is an unbiased estimator of the oracle. For 𝜎 , given a budget 𝑏, we
sample and probe 𝑏 objects to estimate 𝜎 , denoted �̂� . We further
introduce a hyper-parameter 𝜎0 to represent the deviation from
the Proxy Quality assumption. In the ideal case where Proxy
Quality holds, 𝜎0 = 0. We heuristically choose 𝜎 = �̂� + 𝜎0. We use
N(𝜇, 𝜎) to compute Φ(𝐷) and pass it to PQA to find the answers.

Algorithm 2: PQE
1 Function PQE(𝐷 , 𝛾 , 𝛿 , 𝑟 , 𝑏, 𝜎0):
2 𝑆 ← Sample(𝐷 , 𝑏)
3 𝜎 ← 𝜎0+ std({𝑑𝑖𝑠𝑡𝑂 (𝑥) − 𝑑𝑖𝑠𝑡𝑃 (𝑥) | 𝑥 ∈ 𝑆 })
4 Φ𝐷 ← { CDF𝑁 (0,𝜎 )(𝑟 − 𝑑𝑖𝑠𝑡𝑃 (𝑥)) | 𝑥 ∈ 𝐷 }
5 if RT query then

6 return PQA-RT(Φ𝐷 , 𝛾 , 𝛿)
7 else

8 return PQA-PT(Φ𝐷 , 𝛾 , 𝛿)

6



Figure 6: Precision of proxy prefixes 𝐷𝑘 .

Algorithm 2 details the steps. In lines 2-4, we draw a sample
𝑆 ⊆ 𝐷 of |𝑆 | = 𝑏 objects to estimate 𝜎 and compute Φ(𝐷). In lines
5-8, we invoke Algorithm PQA with Φ(𝐷) for PT or RT queries.
The overall time complexity is dominated by Algorithm PQA: the
additional time complexity on top of PQA is 𝑂 ( |𝐷 |).

We now introduce Core Set Closure assumption, our second
alternative assumption, and develop two algorithms 𝐶𝑆𝐶 and 𝐶𝑆𝐸.

4.2 Core Set Closure

In § 4.2.1, we formally introduce the Core Set Closure assumption
and show how to find the optimal sample and probe strategy when
core set size is known. We also analyze the case when core set
size is unknown and show how to ensure high success probability.
In § 4.2.2, we develop Algorithms CSC and CSE based on this. In
§ 4.2.3, we discuss how to support progressive query processing.

4.2.1 Core Set Closure Assumption. For a query, we define the
core set as the set of all oracle neighbors whose proxy prefix is a
valid answer. We use 𝑐 to denote the size of a given core set 𝐶 . A
core set𝐶 is closed w.r.t. an RT (resp. PT) query if for any 𝑥 ∈ 𝐶 , any
oracle neighbor whose proxy index is larger (resp. smaller) than
that of 𝑥 is also an element of 𝐶 . Core Set Closure assumption
says that, for any given query, the core set is closed w.r.t. that query.

For RT queries, the core set is always closed, because as the
proxy index of oracle neighbors increases, the recall of correspond-
ing proxy prefix monotonically increases. For PT queries, with a
properly tuned proxy, the core set is likely to be closed in practice.
In Figure 6, we report the average 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝐷𝑘 ) over 100 random
queries on two real datasets, Mimic-III [26] and night-street [11].
It is clear that the precision of proxy prefix 𝐷𝑘 monotonically de-
crease as 𝑘 increases on both datasets, which shows the core set
closure property for PT queries.

We uniformly draw 𝑚 samples of size 𝑠 from 𝐷 to derive 𝑘S
where S is the union of samples, and return 𝐷𝑘S as the answer.
Recall that 𝑘S is the largest (resp. smallest) 𝐼 (𝑥) for RT (resp. PT)
queries, where 𝑥 is determined to be an oracle neighbor by probing
S (see § 3, Assumption 2). If the core set 𝐶 is closed w.r.t. a given
query, the success probability of𝐷𝑘S is the likelihood ofS intersect-
ing with𝐶 , i.e., 𝑃𝑜𝑆 (𝐷𝑘S , 𝑀,𝛾) = 𝑃𝑟 [S∩𝐶 ≠ ∅]. Since samples are
drawn uniformly, we have 𝑃𝑟 [S∩𝐶 ≠ ∅] = 1− (

( |𝐷 |−𝑐
𝑠

)
/
( |𝐷 |
𝑠

)
)𝑚 =

1−(∏𝑐−1
𝑖=0

|𝐷 |−𝑠−𝑖
|𝐷 |−𝑖 )

𝑚 , where 𝑠 is the sample size and𝑚 is the number

of samples. We denote 𝑓 ( |𝐷 |, 𝑠,𝑚, 𝑐) := 1 − (∏𝑐−1
𝑖=0

|𝐷 |−𝑠−𝑖
|𝐷 |−𝑖 )

𝑚 .

When c is known. Given 𝑠 and𝑚, the expected number of or-
acle calls made by the sample and probe strategy is 𝐸𝑂𝐶 (𝑠,𝑚) =
E[|S|] = |𝐷 | (1− (1− 𝑠

|𝐷 | )
𝑚). When 𝑐 is known, we can determine

𝑠 = 𝑠∗ and 𝑚 = 𝑚∗, which minimizes 𝐸𝑂𝐶 (𝑠,𝑚) while ensuring

𝑓 ( |𝐷 |, 𝑠,𝑚, 𝑐) ≥ 1 − 𝛿 , by solving the following equation:

min
𝑠,𝑚

𝐸𝑂𝐶 (𝑠,𝑚) = |𝐷 | (1 − (1 − 𝑠

|𝐷 | )
𝑚)

s.t. 𝑓 ( |𝐷 |, 𝑠,𝑚, 𝑐) ≥ 1 − 𝛿
(8)

By plugging in the expression for 𝑓 ( |𝐷 |, 𝑠,𝑚, 𝑐), the constraint
can be simplified to𝑚 ≥ ⌈ 𝑙𝑜𝑔 (𝛿)

𝑙𝑜𝑔 (∏𝑐−1
𝑖=0

|𝐷 |−𝑠−𝑖
|𝐷 |−𝑖 )

⌉. By denoting the RHS as

𝑚(𝑠), we can rewrite the constraint as𝑚 ≥ 𝑚(𝑠) for simplicity. Note,
for a given 𝑠 , 𝐸𝑂𝐶 (𝑠,𝑚) monotonically increases as𝑚 increases. For
a fixed 𝑠 , the optimal𝑚 which ensures a high success probability
(i.e., ≥ 1 − 𝛿) and minimizes 𝐸𝑂𝐶 (𝑠,𝑚) is clearly, 𝑚 = 𝑚(𝑠). As
a special case, we have 𝑚∗ = 𝑚(𝑠∗). Thus, a naive approach for
finding 𝑠∗ and𝑚∗ is to compute 𝐸𝑂𝐶 (𝑠,𝑚) for each 1 ≤ 𝑠 ≤ |𝐷 |
and𝑚 =𝑚(𝑠) and picking the best.

Such exhaustive search for the exact value of 𝑠∗ and𝑚∗, how-
ever, can be expensive in a large DB. Instead, we are interested in
approximation solutions with good guarantees, which we develop
next. Given a query, let (𝑠,𝑚) denote the sample size and number
of samples used by a strategy. Then |𝐷 | −𝐸𝑂𝐶 (𝑠,𝑚) denotes the ex-
pected number of saved oracle calls compared with the exhaustive
approach of probing every object in the DB. Define the savings ratio
as 𝜉 (𝑠,𝑚) = |𝐷 |−𝐸𝑂𝐶 (𝑠,𝑚)

|𝐷 |−𝐸𝑂𝐶 (𝑠∗,𝑚∗) . It denotes the fraction of oracle calls
saved by strategy (𝑠,𝑚) compared to the optimal strategy (𝑠∗,𝑚∗).
A larger 𝜉 indicates a better approximation, and the optimal strategy
(𝑠∗,𝑚∗) yields 𝜉 (𝑠∗,𝑚∗) = 1.

Let us examine the special cases where either 𝑠 = 1 or𝑚 = 1. For
𝑠 = 1, we let𝑚 =𝑚(1), and

𝜉𝑠=1 := 𝜉 (1,𝑚 (1)) ≥ 𝛿
−1
𝑐 (

1
|𝐷 | −

|𝐷 |
|𝐷 |−1) · (1 − 1/ |𝐷 |) (9)

For 𝑚 = 1, we set 𝑠 = 𝑠1 := ⌈ −𝑙𝑜𝑔 (𝛿)∑𝑐−1
𝑖=0

1
|𝐷 |−𝑖
⌉ to ensure high success

probability, and

𝜉𝑚=1 := 𝜉 (𝑠1, 1) ≥ 𝛿
−1
|𝐷 |𝑐 · (1 − 1/ |𝐷 | + 𝑙𝑜𝑔 (𝛿)/𝑐) (10)

In practice where e.g., 𝛿 = 0.1, |𝐷 | = 10, 000, and 𝑐 = 100, we
have both 𝜉𝑠=1 and 𝜉𝑚=1 being no less than 97.7%, that is, if we fix
either 𝑠 = 1 or𝑚 = 1 as above, the saved oracle usage is at least
97.7% of what the optimal strategy (𝑠∗,𝑚∗) achieves. Thus, either
of them can be used as an approximation to the optimal strategy.

When 𝑐 is unknown . We incur extra oracle calls and apply
Hoeffding Bounds [48] to ensure high success probability.

Proposition 4.2 (Hoeffding Bounds). Let {𝑋𝑖 }𝑛𝑖=1 be indepen-
dent random variables, with 𝑋𝑖 ∈ {0, 1} and let E[𝑋𝑖 ] = 𝜇. Let
𝜇 = 1

𝑛

∑𝑛
𝑖=1 𝑋𝑖 . Then for ∀𝜖 ≥ 0, we have the concentration bound

𝑃𝑟 [𝜇 − 𝜖 ≤ 𝜇 ] ≥ 1 − 𝑒𝑥𝑝 (−2𝑛𝜖2) (11)

For an RT query with target𝛾 , we can derive a probabilistic lower
bound for 𝑐 as follows. For an RT query, the core set 𝐶 consists of
the top (1 − 𝛾) × 100 % oracle neighbors of largest proxy indices.
That is, we can write 𝑐 = ⌊|𝑁𝑁𝑂 | (1 − 𝛾)⌋ + 1. When 𝑠 and𝑚 are
fixed, 𝑓 ( |𝐷 |, 𝑠,𝑚, 𝑐) monotonically increases as 𝑐 increases. Given
𝛿𝑟 ∈ (0, 1), let 𝑐 denote a probabilistic lower bound of 𝑐 , i.e., 𝑃𝑟 [𝑐 ≥
𝑐] ≥ 1 − 𝛿𝑟 . We can solve Eq. 8, either exactly or approximately as
needed, subject to a more stringent constraint 𝑓 ( |𝐷 |, 𝑠,𝑚, 𝑐) ≥ 1−𝛿

1−𝛿𝑟
to find 𝑠 and𝑚, which ensures an overall success probability no
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less than 1 − 𝛿 . We show how to derive such probabilistic lower
bound 𝑐 using Hoeffding Bounds.

Randomly draw 𝑥𝑖 ∈ 𝐷 . Define 𝑋𝑖 = 1 iff 𝑑𝑖𝑠𝑡𝑂 (𝑥𝑖 ) ≤ 𝑟 . We
have 𝜇𝐷 := E[𝑋𝑖 ] = |𝑁𝑁𝑂 |

|𝐷 | . Randomly draw {𝑥𝑖 }𝑛𝑖=1 with replace-
ment. Denote ˆ𝜇𝐷 = 1

𝑛

∑𝑛
𝑖=1 𝑋𝑖 . For any 𝜖𝑟 , 𝛿𝑟 ∈ (0, 1), by Hoeffding

Bounds, we have 𝑃𝑟 [ ˆ𝜇𝐷 − 𝜖𝑟 ≤ 𝜇𝐷 ] ≥ 1 − 𝛿𝑟 if 𝑛 ≥ 𝑙𝑜𝑔 (𝛿𝑟 )
−2𝜖2𝑟

. For

an RT query with target 𝛾 , since 𝑐 = ⌊|𝑁𝑁𝑂 | (1 − 𝛾)⌋ + 1, and we
have 𝑃𝑟 [𝑐 ≥ ⌊|𝐷 | ( ˆ𝜇𝐷 − 𝜖𝑟 ) (1−𝛾)⌋ + 1] ≥ 1−𝛿𝑟 , if 𝑛 ≥ 𝑙𝑜𝑔 (𝛿𝑟 )

−2𝜖2𝑟
. We

denote the probabilistic lower bound 𝑐 := ⌊|𝐷 | ( ˆ𝜇𝐷 − 𝜖𝑟 ) (1−𝛾)⌋ + 1.
For PT queries, such 𝑐 is hard to obtain. Given 𝛿 and 𝑘 , we

apply Hoeffding Bounds in a similar way to derive a probabilistic
lower bound for the precision 𝑀𝑝 (𝐷𝑘 ), denoted as 𝜇𝐷𝑘

. That is,
𝑃𝑟 [𝑀𝑝 (𝐷𝑘 ) ≥ 𝜇𝐷𝑘

] ≥ 1 − 𝛿 . For a PT query with target 𝛾 , 𝐷𝑘 is
a high probability valid answer if 𝜇𝐷𝑘

≥ 𝛾 . We use heuristics to
identify 𝐷𝑘 of high 𝜇𝐷𝑘

and good CR (details in § 4.2.2).

4.2.2 Algorithms with Core Set Closure.

Algorithm CSC. Algorithm CSC returns high probability valid
answers with a minimal expected number of oracle calls and empiri-
cally good CR, under Core Set Closure and taking 𝑐 as input. CSC
is presented in Algorithm 3. We compute 𝑠∗ and𝑚∗ in line 2 either
exactly or approximately, and draw samples in line 3. In lines 4 to
8, we compute 𝑘S according to the query type and return 𝐷𝑘S as
the answer. The exact solution to Eq.8 requires 𝑂 (𝑐 |𝐷 |) operations
while approximate solutions take 𝑂 (𝑐) operations. The time com-
plexity is dominated by accessing proxy prefixes, which requires
sorting all objects w.r.t. proxy distance taking 𝑂 ( |𝐷 |𝑙𝑜𝑔( |𝐷 |)).

Algorithm 3: CSC
1 Function CSC(𝐷 , 𝑐 , 𝛿):
2 𝑠∗,𝑚∗ ← getsm(|𝐷 |, 𝑐 , 𝛿) /* Solve Eq.8 */

3 S ← UniformSample(𝐷 , 𝑠∗,𝑚∗)
4 if RT query then

5 𝑘S ← max{𝐼 (𝑥) | 𝑥 ∈ S ∧ 𝑑𝑖𝑠𝑡𝑂 (𝑥) ≤ 𝑟 }
6 else

7 𝑘S ← min{𝐼 (𝑥) | 𝑥 ∈ S ∧ 𝑑𝑖𝑠𝑡𝑂 (𝑥) ≤ 𝑟 }
8 return 𝐷𝑘S

Algorithm CSE. Algorithm CSE incurs more oracle calls and
returns high probability valid answers in general settings where 𝑐
is unknown or Core Set Closure assumption does not hold.

CSE is presented in Algorithm 4. CSE-RT is given in lines 1 to
4. Given 𝜖𝑟 and 𝛿𝑟 , we sample and probe 𝑛 = ⌈ 𝑙𝑜𝑔 (𝛿𝑟 )−2𝜖2𝑟

⌉ objects to
derive 𝑐 . Then, we invoke Algorithm CSC to process the query
subject to 𝑓 ( |𝐷 |, 𝑠,𝑚, 𝑐) ≥ 1−𝛿

1−𝛿𝑟 . CSE-PT is given in lines 5 to 15.
We use CSC to find good answer candidates, and apply Hoeffding
Bounds to return high probability valid answers. Specifically, given
a query and budget 𝑏 ′, we sample and probe 𝑏 ′ objects to estimate
𝑐 , then invoke CSC with the estimation to compute 𝐷𝑘1 (lines 6 to
8). We also use the same sample to estimate the largest 𝑘 = 𝑘2 such
that 𝐷𝑘 has a sampled precision no less than 𝛾 (line 9). To improve

CR (i.e., recall for PT queries), we set 𝑘 = max{𝑘1, 𝑘2} and consider
𝐷
𝑘
as the answer candidate (line 10). In lines 11 to 15, given 𝜖𝑝 , we

draw samples and estimate a probabilistic lower bound for𝑀𝑝 (𝐷𝑘
)

by applying Hoeffding Bounds. For a PT query with target 𝛾 , we
return 𝐷

𝑘
if the probabilistic lower bound is no less than 𝛾 . O/w,

we return all oracle neighbors identified from samples. The overall
time complexity is dominated by CSC and is also 𝑂 ( |𝐷 |𝑙𝑜𝑔( |𝐷 |)).

4.2.3 Progressive Query Processing. We observe that though we
minimize the oracle usage, for some challenging queries the bare
minimum of oracle calls can still be too high.We propose progressive
query processing for that. Recall that, our CSC and CSE approaches
draw 𝑚 samples of size 𝑠 to compute 𝑘S and return 𝐷𝑘S as the
answer. Instead of computing 𝑘S after seeing all the samples, we
can derive 𝑘 ′S after seeing each sample and use 𝑘 ′S to select answers
with adaptive success probability bounds that are progressively
better and better. We can keep refining 𝑘 ′S when we see more
samples, eventually approaching 𝑘S , but the user can terminate the
evaluation at any time based on the oracle cost incurred thus far.

Algorithm 4: CSE
1 Function CSE-RT(𝐷 , 𝛿) :

2 ˆ𝜇𝐷 ← HoeffdingEst(𝐷 , 𝛿𝑟 , 𝜖𝑟)
3 𝑐 ← ⌊|𝐷 | ( ˆ𝜇𝐷 − 𝜖𝑟 ) (1 − 𝛾)⌋ + 1
4 return CSC(𝐷 , 𝑐 , 1−𝛿

1−𝛿𝑟 )

5 Function CSE-PT(𝐷 , 𝛿):
6 𝑆 ← UniformSample(𝐷 , 𝑏 ′)

7 𝑐 ← |𝐷 |
|𝑆 | · the size of core set w.r.t. 𝑆

8 𝐷𝑘1 ← CSC(𝐷 , 𝑐 , 1 − 𝛿)
9 𝑘2 ← max{𝐼 (𝑥) | 𝑥 ∈ 𝑆 ∧𝑀𝑝 (𝐷𝐼 (𝑥) ∩ 𝑆) ≥ 𝛾}

10 𝑘 ← max{𝑘1, 𝑘2}
11 𝜇𝐷

�̂�
← HoeffdingEst(𝐷

𝑘
, 𝛿 , 𝜖𝑝) −𝜖𝑝

12 if 𝜇𝐷
�̂�
≥ 𝛾 then

13 return 𝐷
𝑘

14 else

15 return {𝑥 ∈ 𝑆 | 𝑑𝑖𝑠𝑡𝑂 (𝑥) ≤ 𝑟 }

16 Function HoeffdingEst(𝐷 , 𝛿 , 𝜖):
17 𝑆 ← UniformSample(𝐷 , ⌈ 𝑙𝑜𝑔 (𝛿)−2𝜖2 ⌉)
18 return 𝜇 ← | {𝑥 ∈𝑆 |𝑑𝑖𝑠𝑡𝑂 (𝑥) ≤𝑟 } |

|𝑆 |

5 EXPERIMENTS

Our extensive experiments (1) assess the performance of PQA to
demonstrate its optimality w.r.t. CR and success probability under
ProxyQuality assumption (§ 5.2), (2) assess the performance of
CSC to demonstrate itsminimal oracle usage and success probability
under Core Set Closure assumption (§ 5.3), (3) compare PQE,
CSE with the baselines on CR and success probability under the
same oracle usage (§ 5.4) and under varied oracle budgets (§ 5.5). (4)
Compare PQE, CSE with the baselines w.r.t. query time (§ 5.6). (5)
Compare PQE, CSE with the baselines w.r.t. CPU overhead, CR, and
success probability on datasets of various sizes and domains (§ 5.7).
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Datasets Oracle Proxy Query targets
VOC&COCO Human labeler ML-GCN[15] Similar images

Mimic-III&eICU Physicians LIG-Doctor[45] Similar patients
night-street Mask R-CNN[23] ResNet-50[24] Car frames

5.1 Experimental Setup

5.1.1 Datasets and Proxy Models.

Multi-label Image Recognition. VOC [20] and COCO [35] are
widely used benchmarks in multi-label recognition tasks. The vali-
dation set of COCO consists of 40, 504 images from 80 classes, and
VOC contains 4, 952 images from 20 object categories. We also uni-
formly sample a 8000-image subset from COCO, denoted as COCO
(small). We use COCO and COCO (small) in different experiments.

Medical. Mimic-III [26] and eICU [41] are two publicly available
clinical datasets, that include patient trajectories, demographics
collected by daily ICU admissions, and clinical measurements. After
pruning records with only one admission, we obtain a Mimic-III
subset of 4, 243 records and an eICU subset of 8, 235 records.

Video. We use the night-street dataset [11] to support queries
over classification tasks. Each video frame has a Boolean label
indicating whether or not it contains a car. We uniformly draw a
subset of 10, 000 frames from the original dataset for evaluation.
5.1.2 Baselines. We consider the following baselines.

SUPG The closest work to ours is SUPG [29]. SUPG uses oracle
𝑂 ′ with a Boolean output and a proxy model 𝑃 ′ which outputs a
score in [0, 1]. Given a query object 𝑞 and a radius 𝑟 , our problem
can be mapped to a binary classification problem: for each object
𝑥 , is it a near neighbor to 𝑞 w.r.t. 𝑟? Given oracle 𝑂 and proxy 𝑃 for
our problem, a natural oracle predicate for SUPG should output
1 when the given object is a near neighbor and 0 otherwise. This
translates to𝑂 ′(𝑥) = 1 iff 𝑑𝑖𝑠𝑡𝑂 (𝑥) <= 𝑟 . Similarly, a natural proxy
model for SUPG should give high scores when the corresponding
object is more probable to be a near neighbor. As illustrated in
Figure 5, with a properly chosen proxy, proxy distance 𝑑𝑖𝑠𝑡𝑃 (.)
is a good approximation for oracle distance 𝑑𝑖𝑠𝑡𝑂 (.). Given that
𝑑𝑖𝑠𝑡𝑃 (𝑥) ∈ [0, 1] in our problem, we choose 𝑃 ′(𝑥) = 1 − 𝑑𝑖𝑠𝑡𝑃 (𝑥)
as the proxy model for SUPG. Intuitively, if object 𝑥 has a small
proxy distance, 𝑥 is more likely to have a small oracle distance as
well and hence more probable to be classified as 𝑂 ′(𝑥) = 1, which
is properly reflected by a high value of 𝑃 ′(𝑥).

Probabilistic Top-K [32]. This baseline studies approximate
Top-K queries and delivers solutions with statistical guarantees.
Given a query, there exists a direct mapping from our FRNN query
to a Top-K query. For example, given a query object 𝑞 and radius
𝑟 , an FRNN query asks for an answer 𝐴𝑛𝑠 which comprises all
near-neighbours within the radius 𝑟 to 𝑞. Naturally, we can re-
write this query in Top-K semantics: given query object 𝑞, return
the Top-𝐾 nearest neighbors to 𝑞 where 𝐾 = |𝐴𝑛𝑠 | according to
the aforementioned FRNN query. Furthermore, this Top-K baseline
relies on distribution over oracle predictions, which can be obtained
from our ProxyQuality assumption in PQA.

Sample2Test Given an FRNN RT (resp. PT) query, this baseline
first probes samples w.r.t. a given oracle budget, and then selects the
optimal proxy prefix as the answer according to sample precision
(resp. recall). This is the approach used in probabilistic predicates
(PP) [37], NoScope [28], and also serves as a baseline in SUPG [29].
Given a sample 𝑆 ⊂ 𝐷 and a proxy index 𝑘 , denote 𝑆𝑘 = 𝑆 ∩ 𝐷𝑘 .

The sample precision at 𝑘 is 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑆 (𝑘) = |𝑆𝑘∩𝑁𝑁𝑂 |
|𝑆𝑘 | and the

sample recall is 𝑅𝑒𝑐𝑎𝑙𝑙𝑆 (𝑘) = |𝑆
𝑘∩𝑁𝑁𝑂 |
|𝑆∩𝑁𝑁𝑂 | . Given dataset 𝐷 and the

target 𝛾 , this baseline returns 𝐷𝑘′ where 𝑘 ′ = 𝑚𝑎𝑥{1 ≤ 𝑘 ≤ |𝐷 | |
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑆 (𝑘) ≥ 𝛾} for PT queries, and 𝑘 ′ = 𝑚𝑖𝑛{1 ≤ 𝑘 ≤ |𝐷 | |
𝑅𝑒𝑐𝑎𝑙𝑙𝑆 (𝑘) ≥ 𝛾} for RT queries. We select the largest (resp. smallest)
proxy prefix for PT (resp. RT) to improve CR.

Scan2TestWe also consider the naive approach which probes
all objects with the oracle and selects the correct answer set for a
given query. This approach is used as the baseline in [32].

5.1.3 Evaluation Measures. For both RT and PT queries, we are
interested in three measures: (i) empirical success probability in
relation to the required success probabilities; (ii) average CR of
answers returned by different methods; and (iii) query processing
time including (a) CPU overhead and (b) number of oracle calls. We
do not compare proxy time since it is identical for all approaches
and is only a fraction of the overall query processing time.

5.1.4 Protocol. Our evaluation protocol randomly chooses several
query objects from a dataset and aggregates our measures for those
query objects. In Section 5.2, we randomly choose 200 query ob-
jects and aggregate their results. In other experiments, we randomly
choose 50 query objects and execute each query 10 times and aggre-
gate their results. This is because PQA is deterministic while other
algorithms are subject to randomness, so we average over multi-
ple trials. We use cosine distance whenever the model outputs are
multi-dimensional vectors: 𝑑𝑖𝑠𝑡𝑐𝑜𝑠 (y1, y2) = 1 − y1 ·y2

∥y1 ∥ · ∥y2 ∥ , given
its wide application in proximity query processing [3, 31, 38]. When
the output is scalar (e.g., Boolean labels), we use the absolute dif-
ference 𝑑𝑖𝑠𝑡𝑎𝑏𝑠 (y1, y2) = |y1 − y2 | as the distance function, which
allows us to generalize SUPG query with boolean oracle predicates.
In all cases, the radius threshold is 𝑟 = 0.9. The choice of distances
and thresholds has no impact on our statistical guarantees.

Default values. Unless otherwise stated, we set 𝛾 (recall and
precision targets) to 0.95 and 𝛿 to 0.1 in all our experiments. We
add a black dashed line (− · −) at the level of 1 − 𝛿 in figures to
help visually track the success probability of each approach. We
empirically choose 𝜎0 = 0.3 for PQE, 𝜖𝑝 = 0.1% and 𝑏 ′ = 100
for CSE-PT, 𝜖𝑟 = 10% and 𝛿𝑟 = 0.05 for CSE-RT according to our
experiment results. We choose a small 𝜖𝑝 for CSE-PT to improve the
probabilistic lower bound for precision, and a relatively large 𝜖𝑟 for
CSE-RT to reduce the oracle usage incurred by applying Hoeffding
Bounds. In addition, we only report results of CSE when𝑚 = 1 (see
Eq. 10) given its dominating performance over other𝑚 settings.

Our algorithms are implemented in Python 3.7 and experiments
are conducted on a M1 Pro chip @ 3.22GHz with a 16GB RAM.

5.2 PQA Success at Maximal CR

PQA finds high probability valid answers of maximal expected
CR with zero oracle calls, whenever Proxy Quality assumption
holds (§ 4.1). We test it on two semi-synthetic datasets. Specifically,
we use real proxy distances from VOC and eICU, and synthesize
oracle distances with a normal distribution N(0, 𝜎 = 0.1). We clip
the normal distribution to [0, 1] to agree with the output range
of our distance measures. We demonstrate CR maximality and
success probability guarantees of PQA by comparing it with a
series of variants. Recall that PQA returns the top-𝑘∗ objects of
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smallest proxy distances as the answer. We measure the success
probability and CRwhen using a perturbed𝑘∗. We try perturbations
ranging from −20% to 20% by returning top-(1 + 𝑝𝑒𝑟𝑡𝑢𝑟𝑏) · 𝑘∗ for
−20% ≤ 𝑝𝑒𝑟𝑡𝑢𝑟𝑏 ≤ 20%.

The results are shown in Figure 7. The two top plots summarize
RT queries. Recall 𝛿 = 0.1, which requires success probability being
no less than 90%. On VOC, with zero perturbation, PQA achieves a
92% empirical success probability and 39% CR for RT queries. On
eICU, the empirical success probability and CR are 90% and 38%
respectively. With negative perturbation, empirical success prob-
ability quickly shrinks to nearly zero; with positive perturbation,
CR starts to drop. This observation clearly demonstrates that PQA
gives the highest answer CR while respecting the success proba-
bility constraint. The two bottom plots are for PT queries, and are
similar to RT. The unperturbed PQA achieves 94% empirical success
probability on both datasets, a 53% CR on VOC, and a 42% CR on
eICU. Any perturbation to 𝑘∗ either fails the success probability
constraint or degrades CR.

We compare PQA and Top-K on the same semi-synthetic VOC
dataset (see Figure 8). Both approaches achieve desired success
probability targets. However, Top-K suffers from huge oracle usage
while PQA needs no oracle calls, indicating PQA is capable of effi-
cient query processing when proxy quality distribution is known.
Furthermore, we investigate the sensitivity of PQA to 𝜎4, shown
in Figure 9. We test 𝑃𝑄𝐴 on VOC with various 𝜎 values and report
PQE performance5 for comparison purposes. As 𝜎 increases, for
both query types, the success probability of PQA increases while
CR decreases. This agrees with the intuition that, as the proxy qual-
ity gets worse, PQA becomes more conservative to improve success
probability at the cost of CR degradation. Since PQE does not rely on
external 𝜎 , both success probability and CR are constant and higher
than PQA, given that PQE has the flexibility to probe samples with
the oracle.

5.3 CSC with Minimal Oracle Usage

CSC ensures high success probabilities with minimal oracle usage
under Core Set Closure assumption (§ 4.2). We implement an
exact algorithm and two approximation algorithms to compute
𝑠∗ and𝑚∗ (§ 4.2.1), Approx-s1 and Approx-m1. We compare these
algorithms to two baselines, Rand-s and Rand-sm. Specifically, Rand-
s randomly chooses 𝑠 and sets𝑚 =𝑚(𝑠), whereas Rand-sm chooses
both 𝑠,𝑚 at random. For each query, we precompute the core set
size and feed it to all approaches. We study the empirical success
probability and oracle usage on VOC and eICU. The results for
RT and PT queries are reported in Figure 10. Especially, we report
standard deviation of oracle usage for both query types on both
datasets. We also report CPU overheads in Figure 11.

For RT queries, all approaches achieve high empirical success
probability. The exact algorithm invokes the oracle on only 9.8%
objects in VOC and 7.1% objects in eICU. The oracle usage of approx-
imation algorithms is just up to 1.1%more than the exact algorithm.
However, the baseline Rand-s applies the oracle on at least 49.3%
objects and Rand-sm makes oracles calls on at least 94.6% objects.

Results of PT queries are similar to RT. All approaches achieve
high empirical success probability. The exact algorithm has the
4We assume a normal distribution 𝜖𝑖 ∼ N(0, 𝜎) for PQA to compute Φ(𝐷) .
5Budget of PQE set equal to the oracle cost incurred by CSE for the given query.

Figure 7: PQA with perturbed 𝑘∗ on VOC and eICU datasets.

Figure 8: Comparison of PQA and Top-K on VOC.

Figure 9: PQA (solid line) v.s. PQE (dotted line) on VOC.

smallest oracle usage, which accounts for 8.1% objects in VOC and
5.2% objects in eICU. The approximation algorithms incur an oracle
usage which is just up to 2.1% higher than the exact algorithm. The
baseline method Rand-s calls the oracle on at least 39% objects, and
Rand-sm makes oracle calls for at least 93.7% objects.

We are also interested in the CPU overhead of the exact algo-
rithm and the two approximation algorithms. Results on our five
real-world datasets are summarized in Figure 11. Clearly, the exact
algorithm has a larger CPU overhead in comparison to the two ap-
proximation algorithms. Specifically, the approximation algorithms
achieve a speedup up to 1466× for RT queries and 7391× for PT queries
on CPU overheads, in comparison to the exact method.

On VOC, we investigate how sensitive CSC is to the input core
set size 𝑐 and include CSE performance for the same query for
comparison (Figure 12). As 𝑐 increases, for both query types, success
probability of CSC decreases and CR increases. Since CSE estimates
𝑐 internally, both success probability and CR are agnostic to external
𝑐 changes. Note that the CSE performance is generally better than
CSC, which is attributed to the fact that CSE has more flexibility to
probe objects with oracle for the additional 𝑐 estimation.
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Figure 10: Oracle usage and empirical success probability by CSC-RT and CSC-PT.

Figure 11: CSC CPU overheads

Figure 12: CSC (solid line) v.s. CSE (dotted line) on VOC.

5.4 CSE and PQE vs SUPG and Sample2Test

We implement CSE and PQE and compare them to SUPG and Sam-
ple2Test. For a fair comparison, we use the oracle usage incurred by
CSE as the budget for PQE, SUPG, and Sample2Test. We measure
empirical success probability and CR on VOC and eICU (Figure 13).
For RT, CSE and PQE achieve high empirical success probability on
both datasets, while SUPG fails the success threshold empirically
by a margin of 10% on VOC. On CR, PQE outperforms SUPG by a
margin up to 26%, and CSE outperforms SUPG up to 33%. For PT,
all approaches achieve high empirical success probability. On CR,
PQE outperforms SUPG by up to 12% and CSE achieves comparable
CR to SUPG. Sample2Test continuously fails the success probability
for both query types on both datasets.

Failures of SUPG on RT queries stem from the sample mean and
variance it useswithout error bounds, which introduces uncontrolled
uncertainty and degrades statistical guarantees.

5.5 Oracle Efficiency

To measure Oracle efficiency, we perturb the oracle usage incurred
by CSE and use it as the budget for PQE, SUPG, Sample2Test. The
CR of CSE is also plotted as a baseline. Results are in Figure 14.
For RT queries, PQE achieves high empirical success probability
on both datasets, while SUPG and Sample2Test fails frequently
on VOC especially with small budgets. This indicates that CSE is
the most oracle efficient approach for RT queries. For PT queries,
all approaches except Sample2Test achieve high empirical success
probability on both datasets.

Time / Hours PQE CSE SUPG Scan2Test Sample2Test
VOC 21.22 15.88 24.12 27.51 26.84

COCO(small) 32.21 19.66 30.46 44.44 44.06
MIMIC-III 124.3 108.1 865 1061 1045.08

eICU 1337.3 679.2 925 2059 2009.16
night-street 0.38 0.11 0.19 1.11 1.15

Table 3: RT queries: query time by CSE, PQE, and baselines

Time / Hours PQE CSE SUPG Scan2Test Sample2Test
VOC 4.71 6.3 7.52 27.51 26.41

COCO(small) 11.93 13.18 19.45 44.44 39.97
MIMIC-III 997.3 132.7 158.4 1061 1060.69

eICU 569.4 617.3 871.1 2059 1973.64
night-street 0.28 0.25 0.35 1.11 1.17

Table 4: PT queries: query time by CSE, PQE, and baselines.

|D| Success Prob. CR
PQE/CSE/SUPG/Sample2Test PQE/CSE/SUPG/Sample2Test

10034 1/0.99/0.78/0.69 0.72/0.74/0.46/0.53
20068 1/0.99/0.76/0.59 0.65/0.66/0.46/0.58
30102 1/0.99/0.76/0.65 0.63/0.65/0.44/0.5
40137 1/0.98/0.75/0.66 0.68/0.69/0.5/0.54

Table 5: Scalability test for RT queries

|D| Success Prob. CR
PQE/CSE/SUPG/Sample2Test PQE/CSE/SUPG/Sample2Test

10034 1/1/1/0.52 0.73/0.67/0.59/0.73
20068 1/1/1/0.48 0.69/0.65/0.59/0.71
30102 1/1/1/0.5 0.66/0.64/0.62/0.68
40137 1/1/1/0.51 0.67/0.64/0.66/0.74

Table 6: Scalability test for PT queries

5.6 Time Efficiency

The running time of a query is composed of CPU overhead and
model usage including proxy and oracle calls. We measure CPU
overhead for each approach locally and approximate model usage
by timing the number of model calls and average time taken by
each call. For instance, on medical datasets (MIMIC-III & eICU), the
oracle is a human physician whose average diagnosis time is 15
minutes [46], while the proxy is a recurrent neural network taking
roughly 1 millisecond for each call [45]. Results are reported in
Table 3, 4 with the best results in bold and saving ratios w.r.t. SUPG.
For both query types, Sample2Test and Scan2Test are the two most
time-consuming approaches.

5.7 Scalability

We measure CPU overhead, success probability, and CR of PQE,
CSE, SUPG, and Sample2Test. We uniformly draw subsets of the
original COCO dataset (25%, 50%, 75%, and 100%). To make a fair
comparison, we use the oracle usage incurred by CSE as the budget
for PQE and SUPG. Results are reported in Figure 15 and Table 5,
6. For RT queries, CSE, SUPG, and Sample2Test have a reasonably
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Figure 13: CR and empirical success probability by PQE, CSE, SUPG, Sample2Test.

Figure 14: CR and empirical success probability by PQE, SUPG, Sample2Test with perturbed budget from CSE

Figure 15: Scalability test: CPU overheads

low CPU overhead. For PT queries, PQE has the highest CPU over-
head, 2.5 seconds per query, while the overhead of CSE, SUPG, and
Sample2Test is less than 0.2 seconds.

6 RELATEDWORK

Query approximation.Query approximation techniques [33] can
be categorized into (1) online aggregation: select samples online
and use them to answer OLAP queries, and (2) offline synopses gen-
eration to facilitate OLAP queries. Our work adopts a probabilistic
top-k approach [47] and is significantly different from these.
FRNN query. FRNN query answering systems [6, 7] build spatial
indexes on the whole DB, which requires oracle calls on every
single object. Our work focuses on reducing the oracle usage and
is clearly distinguished from this line of work.
Optimizing ML inference. Several recent approaches were pro-
posed to speed up the application of an ML model. Existing ap-
proaches follow either an in-database [17] or in-application ap-
proach [2]. Amazon Aurora is an example of an in-database con-
tainerized solution that enables external calls from SQL queries
to ML models in SageMaker6. Containerized execution introduces
overhead in prediction latency. To mitigate that, Google’s BigQuery
ML7 and Microsoft’s Raven were developed [30]. Compared to
Raven, BigQuery ML relies mostly on hard-coded models and tar-
gets batch predictions, since it inherits a relatively high startup cost.
Raven and its runtime environment ONNX [13] offer the additional
ability to make tuple-level inference.

6https://aws.amazon.com/fr/sagemaker/
7https://cloud.google.com/bigquery-ml/docs

Combining queries and ML inference. Bolukbasi et al. [9] en-
able incremental predictions for neural networks. Computation
time is reduced by pruning examples that are classified in earlier
layers, selected adaptively. Kang et al. [28] present NOSCOPE,
a system for querying videos that can reduce the cost of neural
network video analysis by up to three orders of magnitude via
inference-optimized model search. Lu et al. [37] and Yang et al. [49]
use probabilistic predicates to filter data blobs that do not satisfy
the query and empirically increase data reduction rates. Ander-
son et al. [4] use a hierarchical model to reduce the runtime cost
of queries over visual content. Gao et al. [21] introduce a Multi-
Level Splitting Sampling to let one "promising" sample path prefix
generate multiple "offspring" paths, and direct Monte-Carlo based
simulations toward more promising paths. Lai et al. [32] studies
approximate Top-K query with light-weight proxy models that
generate oracle label distribution. Recent work that proposed to
use cheap proxy models, such as image classifiers, to identify an
approximate set of data points satisfying a query [29], is by far the
closest to our work, albeit they require a budget.

7 CONCLUSION AND DISCUSSION

We formalize and solve precision-target and recall-target queries,
two paradigms that are well-suited for querying the results of ML
predictions. We propose two assumptions and develop four algo-
rithms. Our extensive experiments on five real-world datasets show
that our approach enjoys statistical guarantees with a small cost
and a good complementary rate, i.e., a good balance between recall
and precision rates.

Our framework can be extended to optimize a query workload
using metric properties like triangle inequality [5]. Consider the ob-
jects {𝑞1, 𝑞2, 𝑥}. Suppose that we first choose 𝑞1 as the query object,
and compute the proxy distances 𝑑𝑖𝑠𝑡𝑃 (𝑞1, 𝑞2) and 𝑑𝑖𝑠𝑡𝑃 (𝑞1, 𝑥) to
find answers using our approaches. Next, when we choose 𝑞2 as
the query object, by leveraging triangle inequality, we can lower
bound 𝑑𝑖𝑠𝑡𝑃 (𝑞2, 𝑥) as 𝑑𝑖𝑠𝑡𝑃 (𝑞2, 𝑥) ≥ |𝑑𝑖𝑠𝑡𝑃 (𝑞1, 𝑞2) − 𝑑𝑖𝑠𝑡𝑃 (𝑞1, 𝑥) |.
If this bound is high, we can safely avoid applying the probe to
𝑥 for query 𝑞2. We can extend our framework to multiple proxies
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at different accuracy and cost levels. This represents real-world
scenarios where proxies are derived from huge neural models by
activating specific subnetworks [9]. It is clear that, with multiple
proxy models, the search space for our optimization problem will
exponentially increase. Secondly, by introducing proxies with vari-
ous cost and accuracy levels, optimizing efficiency would go beyond
simply counting oracle calls, and would yield a linear programming
problem. We are currently exploring possible solutions.
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A APPENDIX

A.1 Proof of Lemma 1

In order to prove Lemma 1, we need to introduce the notion of the
usual stochastic order [40] , ≤𝑠𝑡 .

Definition A.1 (Usual Stochastic Order). Let 𝑋 and 𝑌 be two ran-
dom variables such that 𝑃𝑟 [𝑋 ≥ 𝑥] ≤ 𝑃𝑟 [𝑌 ≥ 𝑥], ∀𝑥 ∈ (−∞,∞).
Then 𝑋 is said to be smaller than 𝑌 in the usual stochastic order
(denoted by 𝑋 ≤𝑠𝑡 𝑌 ).

One important property for usual stochastic order is as follows,

Proposition A.2. Let 𝑋 and 𝑌 be two random variables. If 𝑋 ≤𝑠𝑡
𝑌 , then E[𝜓 (𝑋 )] ≤ E[𝜓 (𝑌 )] for all increasing function𝜓 for which
the expectations exist.

The proof of Proposition A.2 relies on constructing upper sets
on the domain of 𝑋 and 𝑌 , which is beyond the scope of this paper.
We refer interested readers to the literature [40] for more details.

Now, we can prove Lemma 1.

Proof. Given 𝛾 , we first show 𝑃𝑜𝑆 (𝑆,𝑀,𝛾) ≤ 𝑃𝑜𝑆 (𝑆 ′, 𝑀,𝛾) and
then E[𝑀 (𝑆)] ≤ E[𝑀 (𝑆 ′)].

Recall 𝑃𝑜𝑆 (𝑆,𝑀,𝛾) = 𝑃𝑟 [𝑀 (𝑆) ≥ 𝛾]. A sufficient condition for
𝑃𝑜𝑆 (𝑆,𝑀,𝛾) ≤ 𝑃𝑜𝑆 (𝑆 ′, 𝑀,𝛾) is 𝑀𝑝 (𝑆) ≤𝑠𝑡 𝑀𝑝 (𝑆 ′) and 𝑀𝑟 (𝑆) ≤𝑠𝑡
𝑀𝑟 (𝑆 ′). We first discuss𝑀 = 𝑀𝑝 , and then𝑀 = 𝑀𝑟 . We abbreviate
𝜙 (𝑥𝑖 ), 𝜙 (𝑥 𝑗 ) as 𝜙𝑖 , 𝜙 𝑗 for brevity.

When 𝑀 = 𝑀𝑝 , define random variables 𝑋 = 𝑁𝑆\{𝑥𝑖 } , 𝑌 = 𝑁𝑆 ,
and 𝑍 = 𝑁𝑆′ . By equation 4, we have 𝑃𝑟 [𝑀𝑝 (𝑆) ≥ 𝛾] = 𝑃𝑟 [𝑌 ≥

⌈|𝑆 |𝛾⌉]. The following relation holds,
𝑃𝑟 [𝑌 ≥ ⌈|𝑆 |𝛾 ⌉ ] = 𝑃𝑟 [𝑋 ≥ ⌈|𝑆 |𝛾 ⌉ ] (1 − 𝜙𝑖 ) + 𝑃𝑟 [𝑋 ≥ ⌈|𝑆 |𝛾 ⌉ − 1]𝜙𝑖

= 𝜙𝑖 · 𝑃𝑟 [𝑋 = ⌈ |𝑆 |𝛾 ⌉ − 1] + 𝑃𝑟 [𝑋 ≥ ⌈|𝑆 |𝛾 ⌉ ]
(12)

where the last step is due to 𝑃𝑟 [𝑋 ≥ ⌈|𝑆 |𝛾⌉ −1] −𝑃𝑟 [𝑋 ≥ ⌈|𝑆 |𝛾⌉] =
𝑃𝑟 [𝑋 = ⌈|𝑆 |𝛾⌉ − 1]. Similarly, we have

𝑃𝑟 [𝑍 ≥ ⌈|𝑆 |𝛾 ⌉ ] = 𝜙 𝑗 · 𝑃𝑟 [𝑋 = ⌈ |𝑆 |𝛾 ⌉ − 1] + 𝑃𝑟 [𝑋 ≥ ⌈|𝑆 |𝛾 ⌉ ] (13)

Since 𝜙𝑖 ≤ 𝜙 𝑗 , we have 𝑃𝑟 [𝑌 ≥ ⌈𝑠𝛾⌉] ≤ 𝑃𝑟 [𝑍 ≥ ⌈𝑠𝛾⌉] for 𝛾 ∈ R,
and therefore 𝑃𝑟 [𝑀𝑝 (𝑆) ≥ 𝛾] ≤ 𝑃𝑟 [𝑀𝑝 (𝑆 ′) ≥ 𝛾] for 𝛾 ∈ R. By
definition, we can conclude 𝑌 ≤𝑠𝑡 𝑍 and𝑀𝑝 (𝑆) ≤𝑠𝑡 𝑀𝑝 (𝑆 ′).

Next, we show𝑀𝑟 (𝑆) ≤𝑠𝑡 𝑀𝑟 (𝑆 ′).When𝛾 = 0, we have 𝑃𝑟 [𝑀𝑟 (𝑆) ≥
0] = 1 ≤ 𝑃𝑟 [𝑀𝑟 (𝑆 ′) ≥ 0] = 1. When 𝛾 ∈ R \ {0}, denote random
variables 𝑋𝐶 = 𝑁 (𝐷\𝑆)∪{𝑥𝑖 } , 𝑌𝐶 = 𝑁𝐷\𝑆 , and 𝑍𝐶 = 𝑁𝐷\𝑆′ . By
equation 5, we have,

𝑃𝑟 [𝑀𝑟 (𝑆) ≥ 𝛾 ] =
|𝑆 |∑︁
𝑘=0

𝑃𝑟 [𝑌 = 𝑘 ] · 𝑃𝑟 [𝑌𝐶 ≤ ⌊
𝑘 (1 − 𝛾 )

𝛾
⌋ ],

𝑃𝑟 [𝑀𝑟 (𝑆′) ≥ 𝛾 ] =
|𝑆 |∑︁
𝑘=0

𝑃𝑟 [𝑍 = 𝑘 ] · 𝑃𝑟 [𝑍𝐶 ≤ ⌊
𝑘 (1 − 𝛾 )

𝛾
⌋ ] .

(14)

Similar to Eq. 12, we have

𝑃𝑟 [𝑌𝐶 ≤ ⌊
𝑘 (1 − 𝛾 )

𝛾
⌋ ] = 𝜙𝑖 · 𝑃𝑟 [𝑋𝐶 = ⌊𝑘 (1 − 𝛾 )

𝛾
⌋ + 1] + 𝑃𝑟 [𝑋𝐶 ≤ ⌊

𝑘 (1 − 𝛾 )
𝛾

⌋ ]

𝑃𝑟 [𝑍𝐶 ≤ ⌊
𝑘 (1 − 𝛾 )

𝛾
⌋ ] = 𝜙 𝑗 · 𝑃𝑟 [𝑋𝐶 = ⌊𝑘 (1 − 𝛾 )

𝛾
⌋ + 1] + 𝑃𝑟 [𝑋𝐶 ≤ ⌊

𝑘 (1 − 𝛾 )
𝛾

⌋ ]
(15)

Since 𝜙𝑖 ≤ 𝜙 𝑗 , we conclude 𝑃𝑟 [𝑌𝐶 ≤ ⌊
𝑘 (1−𝛾 )

𝛾 ⌋] ≤ 𝑃𝑟 [𝑍𝐶 ≤
⌊ 𝑘 (1−𝛾 )𝛾 ⌋] for any 0 ≤ 𝑘 ≤ |𝑆 |. Denote𝜓 (𝑥) := 𝑃𝑟 [𝑍𝐶 ≤ ⌊

𝑥 (1−𝛾 )
𝛾 ⌋],

we have,

𝑃𝑟 [𝑀𝑟 (𝑆) ≥ 𝛾 ] ≤
|𝑆 |∑︁
𝑘=0

𝑃𝑟 [𝑌 = 𝑘 ] ·𝜓 (𝑘) = E[𝜓 (𝑌 ) ] . (16)

Because 𝑃𝑟 [𝑍𝐶 ≤ ⌊
𝑥 (1−𝛾 )

𝛾 ⌋] = 𝑃𝑟 [ 𝛾
1−𝛾 · 𝑍𝐶 ≤ 𝑥], which is

the cdf for the random variable 𝛾
1−𝛾 𝑍𝐶 evaluated at 𝑥 , we know

𝜓 (𝑥) is an increasing function. By Proposition A.2 and the result
𝑌 ≤𝑠𝑡 𝑍 which we have proven above, we have 𝑃𝑟 [𝑀𝑟 (𝑆) ≥ 𝛾] ≤
E[𝜓 (𝑌 )] ≤ E[𝜓 (𝑍 )] = 𝑃𝑟 [𝑀𝑟 (𝑆 ′) ≥ 𝛾] for 𝛾 ∈ R \ {0}.

By definition, we conclude 𝑃𝑟 [𝑀𝑟 (𝑆) ≥ 𝛾] ≤ 𝑃𝑟 [𝑀𝑟 (𝑆 ′) ≥ 𝛾]
for 𝛾 ∈ R and therefore 𝑀𝑟 (𝑆) ≤𝑠𝑡 𝑀𝑟 (𝑆 ′). Because 𝑀𝑝 (𝑆) ≤𝑠𝑡
𝑀𝑝 (𝑆 ′) and𝑀𝑟 (𝑆) ≤𝑠𝑡 𝑀𝑟 (𝑆 ′), we have 𝑃𝑜𝑆 (𝑆,𝑀,𝛾) ≤ 𝑃𝑜𝑆 (𝑆 ′, 𝑀,𝛾)
for any given 𝛾 .

Next, we show E[𝑀 (𝑆)] ≤ E[𝑀 (𝑆 ′)]. Since𝑀𝑝 (𝑆) ≤𝑠𝑡 𝑀𝑝 (𝑆 ′)
and𝑀𝑟 (𝑆) ≤𝑠𝑡 𝑀𝑟 (𝑆 ′), by PropositionA.2, we haveE[𝜓 (𝑀𝑝 (𝑆))] ≤
E[𝜓 (𝑀𝑝 (𝑆 ′))] and E[𝜓 (𝑀𝑟 (𝑆))] ≤ E[𝜓 (𝑀𝑟 (𝑆 ′))] where 𝜓 (𝑥) is
an increasing function. Let𝜓 (𝑥) := 𝑥 , we can conclude E[𝑀 (𝑆)] ≤
E[𝑀 (𝑆 ′)] for both PT and RT queries. □

A.2 Proof of Theorem 4.1

Proof. When 𝑘 = 0, the case is trivial. When 1 ≤ 𝑘 ≤ |𝐷 |,
consider 𝑆 ⊆ 𝐷 of |𝑆 | = 𝑘 . For 1 ≤ 𝑖 ≤ 𝑘 , let 𝑥𝑖 and 𝑥 ′𝑖 denote the
𝑖-th object of the smallest proxy distance from 𝐷𝑘 and 𝑆 , separately.
Since 𝐷𝑘 is the collection of 𝑘 nearest proxy neighbors, we have
𝑑𝑖𝑠𝑡𝑃 (𝑥𝑖 ) ≤ 𝑑𝑖𝑠𝑡𝑃 (𝑥 ′𝑖 ) and, therefore, 𝜙 (𝑥𝑖 ) ≥ 𝜙 (𝑥

′
𝑖
). By replacing

each 𝑥 ′
𝑖
by 𝑥𝑖 for 1 ≤ 𝑖 ≤ 𝑘 , we construct 𝐷𝑘 from 𝑆 . After each
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replacement operation, the success probability and expected CR
monotonically increase according to Lemma 1. As a result, we have
𝑃𝑜𝑆 (𝑆,𝑀,𝛾) ≤ 𝑃𝑜𝑆 (𝐷𝑘 , 𝑀,𝛾) and E[𝑀 (𝑆)] ≤ E[𝑀 (𝐷𝑘 )] for any
𝑆 ⊆ 𝐷 of |𝑆 | = 𝑘 .

□

A.3 Proof of Lemma 2

Proof. Given𝛾 , we first prove 𝑃𝑜𝑆 (𝐷𝑘 , 𝑀𝑟 , 𝛾) ≤ 𝑃𝑜𝑆 (𝐷𝑘+1, 𝑀𝑟 , 𝛾)
by showing𝑀𝑟 (𝐷𝑘 ) ≤𝑠𝑡 𝑀𝑟 (𝐷𝑘+1), thenE[𝑀𝑟 (𝐷𝑘 )] ≤ E[𝑀𝑟 (𝐷𝑘+1)].
The proof is similar to the proof of Lemma 1, and we only present
critical steps for brevity.

We first show 𝑀𝑟 (𝐷𝑘 ) ≤𝑠𝑡 𝑀𝑟 (𝐷𝑘+1). When 𝛾 = 0, we have
𝑃𝑟 [𝑀𝑟 (𝐷𝑘 ) ≥ 0] = 1 ≤ 𝑃𝑟 [𝑀𝑟 (𝐷𝑘+1) ≥ 0] = 1. When 𝛾 ∈ R \ {0},
denote 𝑋 = 𝑁𝐷𝑘

, 𝑋𝐶 = 𝑁𝐷\𝐷𝑘
, 𝑌 = 𝑁𝐷𝑘+1 , 𝑌𝐶 = 𝑁𝐷\𝐷𝑘+1 . We

have,

𝑃𝑟 [𝑀𝑟 (𝐷𝑘 ) ≥ 𝛾 ] =
𝑘∑︁
𝑗=0

𝑃𝑟 [𝑋 = 𝑗 ] · 𝑃𝑟 [𝑋𝐶 ≤ ⌊
𝑗 (1 − 𝛾 )

𝛾
⌋ ],

𝑃𝑟 [𝑀𝑟 (𝐷𝑘+1) ≥ 𝛾 ] =
𝑘+1∑︁
𝑗=0

𝑃𝑟 [𝑌 = 𝑗 ] · 𝑃𝑟 [𝑌𝐶 ≤ ⌊
𝑗 (1 − 𝛾 )

𝛾
⌋ ] .

(17)

For 𝑥 ′ ∈ 𝐷𝑘+1 \ 𝐷𝑘 , similar to Eq. 12, we have,

𝑃𝑟 [𝑌𝐶 ≤ ⌊
𝑗 (1 − 𝛾 )

𝛾
⌋ ] = 𝜙 (𝑥′) · 𝑃𝑟 [𝑋𝐶 = ⌊ 𝑗 (1 − 𝛾 )

𝛾
⌋ + 1]

+ 𝑃𝑟 [𝑋𝐶 ≤ ⌊
𝑗 (1 − 𝛾 )

𝛾
⌋ ]

≥ 𝑃𝑟 [𝑋𝐶 ≤ ⌊
𝑗 (1 − 𝛾 )

𝛾
⌋ ]

(18)

Denote𝜓 (𝑥) := 𝑃𝑟 [𝑌𝐶 ≤ ⌊
𝑥 (1−𝛾 )

𝛾 ⌋], which is an increasing func-
tion, we have,

𝑃𝑟 [𝑀𝑟 (𝐷𝑘 ) ≥ 𝛾 ] ≤
𝑘∑︁
𝑗=0

𝑃𝑟 [𝑋 = 𝑗 ] ·𝜓 ( 𝑗) = E[𝜓 (𝑋 ) ] . (19)

It is easy to examine that 𝑋 ≤𝑠𝑡 𝑌 . By Proposition A.2, we have
𝑃𝑟 [𝑀𝑟 (𝐷𝑘 ) ≥ 𝛾] ≤ E[𝜓 (𝑋 )] ≤ E[𝜓 (𝑌 )] = 𝑃𝑟 [𝑀𝑟 (𝐷𝑘+1) ≥ 𝛾]
for 𝛾 ∈ R \ {0}. By definition, we conclude 𝑃𝑟 [𝑀𝑟 (𝐷𝑘 ) ≥ 𝛾] ≤
𝑃𝑟 [𝑀𝑟 (𝐷𝑘+1) ≥ 𝛾] for 𝛾 ∈ R and therefore𝑀𝑟 (𝐷𝑘 ) ≤𝑠𝑡 𝑀𝑟 (𝐷𝑘+1).

Denote𝜓 (𝑥) := 𝑥 . By Proposition A.2 and the result𝑀𝑟 (𝐷𝑘 ) ≤𝑠𝑡
𝑀𝑟 (𝐷𝑘+1), we have E[𝑀𝑟 (𝐷𝑘 )] ≤ E[𝑀𝑟 (𝐷𝑘+1)], same as the proof
of Lemma 1.

□

A.4 Proof of Eq. 9 & 10

Proof. Wefirst give a lower bound for 𝐸𝑂𝐶 (𝑠∗,𝑚∗), uponwhich
we develop Eq. 9 and 10 accordingly.

Recall𝑚(𝑠) = ⌈ 𝑙𝑜𝑔 (𝛿)
𝑙𝑜𝑔 (∏𝑐−1

𝑖=0
|𝐷 |−𝑠−𝑖
|𝐷 |−𝑖 )

⌉ and𝐸𝑂𝐶 (𝑠∗,𝑚∗) = 𝐸𝑂𝐶 (𝑠∗,𝑚(𝑠∗)),

for any given 𝑐 and 𝛿 . When 𝑠 is a constant, 𝐸𝑂𝐶 (𝑠,𝑚) monotoni-
cally increases as𝑚 increases. Denote𝑚(𝑠) := 𝑙𝑜𝑔 (𝛿)

𝑙𝑜𝑔 (∏𝑐−1
𝑖=0

|𝐷 |−𝑠−𝑖
|𝐷 |−𝑖 )

≤

𝑚(𝑠) for 1 ≤ 𝑠 ≤ |𝐷 |−𝑐 . Clearly, 𝐸𝑂𝐶 (𝑠∗,𝑚(𝑠∗)) ≥ 𝐸𝑂𝐶 (𝑠∗,𝑚(𝑠∗)).
𝐸𝑂𝐶 (𝑠,𝑚(𝑠)) is a monotonically decreasing function of 𝑠 8, whose
minimal value is taken on 𝑠 = |𝐷 | − 𝑐 . We conclude 𝐸𝑂𝐶 (𝑠∗,𝑚∗) ≥

8This can be seen by showing gradients of 𝐸𝑂𝐶 (𝑠,𝑚 (𝑠)) w.r.t. 𝑠 are constantly less
or equal to zero for 1 ≤ 𝑠 ≤ |𝐷 | − 𝑐 .

𝐸𝑂𝐶 ( |𝐷 | − 𝑐,𝑚( |𝐷 | − 𝑐)) and 𝜉 (𝑠,𝑚) ≥ |𝐷 |−𝐸𝑂𝐶 (𝑠,𝑚)
|𝐷 |−𝐸𝑂𝐶 ( |𝐷 |−𝑐,𝑚 ( |𝐷 |−𝑐))

for any 𝑠 ,𝑚 settings.
Next, we prove Eq. 9. When 𝑠 = 1 and 𝑚 = 𝑚(1), we have

𝜉 (1,𝑚(1)) ≥ |𝐷 |−𝐸𝑂𝐶 (1,𝑚 (1))
|𝐷 |−𝐸𝑂𝐶 ( |𝐷 |−𝑐,𝑚 ( |𝐷 |−𝑐)) ≥

|𝐷 |−𝐸𝑂𝐶 (1,𝑚 (1)+1)
|𝐷 |−𝐸𝑂𝐶 ( |𝐷 |−𝑐,𝑚 ( |𝐷 |−𝑐))

due to 𝑚(1) ≤ 𝑚(1) + 1. By taking logarithm on both sides and
cancelling redundant terms, we have,

𝑙𝑜𝑔 (𝜉 (1,𝑚 (1))) ≥ 𝑙𝑜𝑔 (1 − 1
|𝐷 | ) − 𝑙𝑜𝑔 (𝛿)

( 𝑙𝑜𝑔 (1 − 1
|𝐷 | )

𝑙𝑜𝑔 ( |𝐷 ||𝐷 |−𝑐 )
+

𝑙𝑜𝑔 ( |𝐷 |
𝑐
)∑𝑐−1

𝑖=0 𝑙𝑜𝑔 (
|𝐷 |−𝑖
𝑐−𝑖 )

)
(20)

Denote 𝑔(𝑐) :=
𝑙𝑜𝑔 (1− 1

|𝐷 | )
𝑙𝑜𝑔 ( |𝐷 ||𝐷 |−𝑐 )

and ℎ(𝑐) := 𝑙𝑜𝑔 ( |𝐷 |
𝑐
)∑𝑐−1

𝑖=0 𝑙𝑜𝑔 (
|𝐷 |−𝑖
𝑐−𝑖 )

. Because

1 − 1
𝑥 ≤ 𝑙𝑜𝑔(𝑥) ≤ 𝑥 − 1 for 𝑥 > 0, we have

𝑔 (𝑐) ≥
𝑙𝑜𝑔 (1 − 1

|𝐷 | )

1 − |𝐷 |−𝑐|𝐷 |
=
𝑙𝑜𝑔 (1 − 1

|𝐷 | ) |𝐷 |
𝑐

≥ − |𝐷 |
𝑐 ( |𝐷 | − 1)

ℎ (𝑐) ≥ ( |𝐷 | − 𝑐)/ |𝐷 |∑𝑐−1
𝑖=0

|𝐷 |−𝑖
𝑐−𝑖 − 1

≥ ( |𝐷 | − 𝑐)/ |𝐷 |( |𝐷 | − 𝑐)𝑐 =
1

𝑐 |𝐷 |

(21)

Therefore,

𝑙𝑜𝑔 (𝜉 (1,𝑚 (1))) ≥ 𝑙𝑜𝑔 (1 − 1
|𝐷 | ) − 𝑙𝑜𝑔 (𝛿)

1
𝑐
( 1
|𝐷 | −

|𝐷 |
|𝐷 | − 1 ) (22)

which equals to 𝜉 (1,𝑚(1)) ≥ 𝛿
−1
𝑐
( 1
|𝐷 | −

|𝐷 |
|𝐷 |−1 ) · (1 − 1

|𝐷 | ) , as known
as Eq. 9.

Next, we prove Eq. 10. For 𝑚 = 1, we first show 𝑠 = 𝑠1 :=
⌈ −𝑙𝑜𝑔 (𝛿)∑𝑐−1

𝑖=0
1
|𝐷 |−𝑖
⌉ ensures high success probability. When 𝑚 = 1, the

failure rate is 1− 𝑓 ( |𝐷 |, 𝑠, 1, 𝑐) = ∏𝑐−1
𝑖=0

|𝐷 |−𝑠−𝑖
|𝐷 |−𝑖 . By taking logarithm,

we have
∑𝑐−1
𝑖=0 𝑙𝑜𝑔(

|𝐷 |−𝑠−𝑖
|𝐷 |−𝑖 ) ≤ 𝑠 ·

∑𝑐−1
𝑖=0

−1
|𝐷 |−𝑖 . Given 𝛿 , we require

𝑠 ·∑𝑐−1
𝑖=0

−1
|𝐷 |−𝑖 ≤ 𝑙𝑜𝑔(𝛿) to ensure the success probability being no

less than 1 − 𝛿 , which equals to requiring 𝑠 ≥ 𝑠1.
When𝑚 = 1 and 𝑠 = 𝑠1, we have 𝜉 (𝑠1, 1) ≥ |𝐷 |−𝐸𝑂𝐶 (𝑠1,1)

|𝐷 |−𝐸𝑂𝐶 ( |𝐷 |−𝑐,𝑚 ( |𝐷 |−𝑐)) .

By plugging the expression of𝐸𝑂𝐶 (𝑠1, 1) and relaxing
∑𝑐−1
𝑖=0

1
|𝐷 |−𝑖 ≥

𝑐
|𝐷 | , we have |𝐷 | − 𝐸𝑂𝐶 (𝑠1, 1) ≥ |𝐷 | − 1 + |𝐷 |

𝑙𝑜𝑔 (𝛿)
𝑐 . Similarly, by

taking logarithm on both sides, we have,

𝑙𝑜𝑔 (𝜉 (𝑠1, 1)) ≥ 𝑙𝑜𝑔 (1 − 1
|𝐷 | +

𝑙𝑜𝑔 (𝛿)
𝑐
) − 𝑙𝑜𝑔 (𝛿)ℎ (𝑐)

≥ 𝑙𝑜𝑔 (1 − 1
|𝐷 | +

𝑙𝑜𝑔 (𝛿)
𝑐
) − log(𝛿) 1

𝑐 |𝐷 |

(23)

which equals to 𝜉 (𝑠1, 1) ≥ 𝛿
−1
|𝐷 |𝑐 · (1 − 1

|𝐷 | +
𝑙𝑜𝑔 (𝛿)

𝑐 ), as known as
Eq. 10.

□
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