
Conceptually-grounded Mapping Patterns
for Virtual Knowledge Graphs
Diego Calvanese

1,2
, Avigdor Gal

3
, Davide Lanti

1
, Marco Montali

1
, Alessandro Mosca

1

and Roee Shraga
4

1

Free-University of Bozen-Bolzano, Bolzano, Italy

2

Umeå University, Umeå, Sweden

3

Technion – Israel Institute of Technology, Haifa, Israel

4

Khoury College of Computer Science, Northeastern University, Boston, Massachusetts

Abstract
Knowledge Graphs (KGs) have been gaining momentum recently in both academia and industry, due to

the flexibility of their data model, allowing one to access and integrate collections of data of different

forms. Virtual Knowledge Graphs (VKGs), a variant of KGs originating from the field of Ontology-based

Data Access (OBDA), are a promising paradigm for integrating and accessing legacy data sources. The

main idea of VKGs is that the KG remains virtual: the end-user interacts with a KG, but queries are

reformulated on-the-fly as queries over the data source(s). To enable the paradigm, one needs to define

declarative mappings specifying the link between the data sources and the elements in the VKG. In this

work, we try to investigate common patterns that arise when specifying such mappings, building on

well-established methodologies from the area of conceptual modeling and database design.

Keywords
Virtual Knowledge Graphs, Ontology-based Data Access, Mapping patterns, Data Integration

1. Introduction

Data integration and access to legacy data sources are key challenges for contemporary organi-

zations. In the whole spectrum of data integration and access solutions, the approach based on

Virtual Knowledge Graphs (VKGs) is gaining momentum, especially when the underlying data

sources to be integrated come in the form of relational databases (DBs) [1]. VKGs replace the

rigid structure of tables with the flexibility of a graph that incorporates domain knowledge and

is kept virtual, eliminating redundancies. A VKG specification consists of three main compo-

nents: (i) data sources (in the context of this paper, constituted by relational DBs), where the

actual data are stored; (ii) a domain ontology, capturing the relevant concepts, relations, and

constraints of the domain of interest; and (iii) a set of mappings, linking the data sources to the

ontology. A critical bottleneck in this setting lies in the definition and management of map-

pings. In this work, we focus on this issue by proposing a comprehensive catalog of mapping

SEBD 2022: The 30th Italian Symposium on Advanced Database Systems, June 19-22, 2022, Tirrenia (PI), Italy

" calvanese@inf.unibz.it (D. Calvanese); avigal@technion.ac.il (A. Gal); lanti@unibz.it (D. Lanti);

montali@unibz.it (M. Montali); mosca@unibz.it (A. Mosca); r.shraga@northeastern.edu (R. Shraga)

� 0000-0001-5174-9693 (D. Calvanese); 0000-0002-7028-661X (A. Gal); 0000-0003-1097-2965 (D. Lanti);

0000-0002-8021-3430 (M. Montali); 0000-0003-2323-3344 (A. Mosca); 0000-0001-8803-8481 (R. Shraga)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:calvanese@inf.unibz.it
mailto:avigal@technion.ac.il
mailto:lanti@unibz.it
mailto:montali@unibz.it
mailto:mosca@unibz.it
mailto:r.shraga@northeastern.edu
https://orcid.org/0000-0001-5174-9693
https://orcid.org/0000-0002-7028-661X
https://orcid.org/0000-0003-1097-2965
https://orcid.org/0000-0002-8021-3430
https://orcid.org/0000-0003-2323-3344
https://orcid.org/0000-0001-8803-8481
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


DB Schema
Conceptual Model

(E-R)

OWL2QL
DB Ontology

Domain Knowledge

OWL2QL
Target Ontology

DB Design OWL Encoding

VKG Mappings

Alignment
Mappings

Figure 1: The database and the ontology both stem from common domain knowledge.

patterns that emerge when linking data to ontologies. Our catalog is based on the (somehow

reasonable) assumption that both the ontology and the DB schema are derived from a conceptual

analysis of the domain of interest. The resulting knowledge may stay implicit, or may lead to an

explicit representation in the form of a structural conceptual model, which can be represented

using well-established notations such as UML, ORM, or E-R. On the one hand, this conceptual

model provides the basis for creating a corresponding domain ontology through a series of

semantic-preserving transformation steps. On the other hand, it can trigger the design process

that finally leads to the deployment of an actual DB. The whole view is depicted in Figure 1.

Our catalog is built on well-established methodologies and patterns studied in data manage-

ment (e.g., W3C direct mappings (W3C-DM)
1

and extensions), data analysis (e.g., algorithms

for discovering dependencies), and conceptual modeling (e.g., relational mapping techniques).

The idea of mapping patterns is not new. For instance, work in [2] is closely related to ours,

as it also introduces a catalog of mapping patterns. However, there are some key differences

with our approach. One difference is that we consider KGs (with ontologies), whereas that work

focuses on property graphs without an ontology. More importantly, in [2] and in the related

literature, patterns are not formalized or grounded to a specific conceptual representation, but

are rather informally specified and discussed in a “by-example” fashion. On the contrary, each

of our patterns explicitly and non-ambiguously specifies the link between the conceptualization

and the DB instance, which is the one arising from applying well-known semantics-preserving

transformations studied in the area of DB design.

We argue that this foundational grounding paves the way for a variety of VKG design scenarios,

depending on which information artifacts are available, and which ones must be produced. For

example, our patterns could be used to validate existing mappings, or to automatically generate

(i.e., bootstrap) ontology and mappings when only the DB is available. In fact, specific patterns

have been proposed also in relation to ontology and mapping bootstrapping, for which a variety of

tools and approaches have been developed in the last two decades [3, 4, 5, 6, 7]. The approaches in

the literature differ in terms of the overall purposes of bootstrapping (e.g., OBDA, data integration,

ontology learning, checking of DB schema constraints using ontology reasoning), the adopted on-

tology and mapping languages (e.g., OWL2 profiles or RDFS as ontology languages, and R2RML

or custom languages for the specification of mappings), the different focus on direct and/or com-

plex mappings, and the assumed level of automation. The majority of the most recent approaches

1

http://www.w3.org/TR/rdb-direct-mapping/

http://www.w3.org/TR/rdb-direct-mapping/


Table 1
Semantics of the DL-Liteℛ constructs that involve datatypes.

Construct Syntax Element Example Semantics

Top domain ⊤𝑉 Δℐ
𝑉

Literal ℓ ∈ NL “george” ℓℐ ∈ Δℐ
𝑉

Datatype 𝑇𝑖 xsd:int 𝑇 ℐ
𝑖 ⊆ Δℐ

𝑉

Data property name 𝑑 ∈ ND hasName 𝑑ℐ ⊆ Δℐ
𝑂 ×Δℐ

𝑉

Data property domain 𝛿(𝑑) 𝛿(hasName)
{︀
𝑥 ∈ Δℐ

𝑉 | ∃𝑣 ∈ Δℐ
𝑉 : (𝑥, 𝑣) ∈ 𝑑ℐ

}︀
Data property range 𝜌(𝑑) 𝜌(hasName)

{︀
𝑣 ∈ Δℐ

𝑉 | ∃𝑜 ∈ Δℐ
𝑂 : (𝑜, 𝑣) ∈ 𝑑ℐ

}︀
Data property negation ¬𝑑 ¬hasName Δ𝐼

𝑂 ×Δℐ
𝑉 ∖ 𝑑ℐ

closely follow W3C-DM, deriving ontologies that mirror the structure of the input DB.

The remainder of the paper is structured as follows: Section 2 introduces the notation and

basic notions on VKGs, Section 3 presents (an extract of) our catalog of mapping patterns, and

Section 4 concludes the paper.

2. Preliminaries

We use the bold font to denote tuples, e.g., x, y, are tuples. When convenient and non-

ambiguous, we treat tuples as sets and use set operators on them. We assume familiarity with

standard notions and languages from DBs [8], such as SQL or E-R diagrams.

A VKG specification is a triple ⟨𝒯 ,ℳ,𝒮⟩ where 𝒯 is an ontology (or TBox), ℳ a set of

mappings, and 𝒮 the schema of a DB (with constraints, e.g., primary and foreign keys). In VKGs,

the ontology is formulated in OWL2QL
2
, but for conciseness we use its Description Logic (DL)

counterpart, DL-Liteℛ [9], here slightly enriched to handle datatypes.

We fix the following enumerable, pairwise-disjoint sets: NI of individuals, NL of literal values,

NC of class names, NP of object property names, and ND of data property names.

An OWL2QL TBox 𝒯 is a finite set of inclusion axioms of the form 𝐵 ⊑ 𝐶 , 𝑞 ⊑ 𝑟, 𝜌(𝑑) ⊑ 𝑓 ,

or 𝑑 ⊑ 𝑣, where 𝐵, 𝐶 are classes, 𝑞, 𝑟 are object properties, 𝑑 is a data property, 𝑓 is a datatype

expression, 𝜌(𝑑) is a data property range expression, and 𝑣 is a data property expression. These

are defined according to the following grammar, where 𝐴 ∈ NC, 𝑑 ∈ ND, 𝑝 ∈ NP, 𝛿(𝑑) is a

data property domain expression, and 𝑇1, . . . , 𝑇𝑛 are the RDF datatypes:

𝐵 → 𝐴 | ∃𝑟 | 𝛿(𝑑)
𝐶 → ⊤𝐶 | 𝐵 | ¬𝐵

𝑞 → 𝑝 | 𝑝−
𝑟 → 𝑞 | ¬𝑞

𝑓 → ⊤𝐷 | 𝑇1 | · · · | 𝑇𝑛

𝑣 → 𝑑 | ¬𝑑

In the rules above, ⊤𝐶 denotes the “top” element for concepts and ⊤𝐷 the one for data values

(called literals in the RDF terminology). An OWL2QL ABox 𝒜 is a finite set of assertions of the

form 𝐴(𝑎), 𝑝(𝑎, 𝑏), or 𝑑(𝑎, ℓ), where 𝐴 ∈ NC, 𝑝 ∈ NP, 𝑑 ∈ ND, 𝑎 and 𝑏 are individuals in NI,
and ℓ ∈ NL. We call the pair 𝒦 = ⟨𝒯 ,𝒜⟩ an OWL2QL Knowledge Graph (KG).

2

http://www.w3.org/TR/owl2-overview/

http://www.w3.org/TR/owl2-overview/


Similarly to first-order logic, the semantics of DL-Liteℛ KGs is given through Tarski-style

interpretations ℐ = ⟨Δℐ
𝑂,Δ

ℐ
𝑉 , ·ℐ⟩, where Δℐ

𝑂 is a non-empty domain of objects, Δℐ
𝑣 is a non-

empty domain of values, and ·ℐ is an interpretation function. Table 1 reports the semantics for

the constructs involving datatypes. The other constructs are defined as in standard DL-Liteℛ [9].

As usual [10], we say that an interpretation ℐ satisfies a KG 𝒦, denoted by ℐ |= 𝒦, if ℐ satisfies

the ABox assertions and the inclusion axioms in 𝒦.

Mappings. Mappings specify how to populate classes and properties of the ontology with

individuals and values constructed from the data in the underlying DB. In other words, mappings

provide the ABox that, together with a given TBox, realizes a KG. In VKGs, the adopted

language for mappings in real-world systems is R2RML
3
, but for conciseness we use here a more

convenient abstract notation inspired by the literature [11]: a mapping 𝑚 is a pair of the form

⟨𝑠:𝑄(x), 𝑡:L(t(x))⟩, where 𝑄(x) is a SQL query with answer variables x over the DB schema 𝒮 ,

called source query, and L(t(x)) is a list of target atoms of the form 𝐶(t1(x1)), 𝑝(t1(x1), t2(x2)),
or 𝑑(t1(x1), t2(x2)), where 𝐶 ∈ NC, 𝑝 ∈ NP, 𝑑 ∈ ND, and t1(x1) and t2(x2) are terms that

we call templates. We express source queries in relational algebra, omitting answer variables

under the assumption that they coincide with the variables used in the target atoms.

Intuitively, a template t(x) in the target atom of a mapping corresponds to an R2RML string

template
4
, and is used to generate an IRI (hence, an object identifier) or an RDF literal, starting

from DB values retrieved by the source query in that mapping. For the examples, we use the

concrete syntax from the Ontop VKG system [6], in which the source query is expressed in SQL

and each target atom is expressed as an RDF triple pattern with templates. The answer variables

of the source query occurring in the target atoms are distinguished by enclosing them in curly

brackets { · · · }. The following is an example mapping expressed in such syntax:

source SELECT ssn FROM person
target ex:pers/{ssn} a ex:Person .

In the mapping above, the string ex: denotes a URI prefix, e.g., ex:Person is an abbreviation for

the URI http://www.example.com/Person. Such mapping, when applied to a DB instance 𝒟 of

𝒮 , populates the class ex:Person with IRIs constructed by replacing the answer variable ssn

occurring in the target atom with the corresponding values assigned to that variable by the

answers to the SQL source query evaluated over 𝒟. For instance, if the source query returns

two answers that assign to the answer variable ssn respectively the values 1234 and 5678, then

the mapping above produces the following RDF graph (expressed in the Turtle syntax
5
), stating

that individuals ex:pers/1234 and ex:pers/5678 are both instances of class ex:Person:

ex:pers/1234 a ex:Person . ex:pers/5678 a ex:Person .

We denote by 𝒜ℳ(𝒟) the virtual ABox constructed through mappings ℳ from a DB 𝒟.

Given a VKG specification ⟨𝒯 ,ℳ,𝒮⟩ and a database instance 𝒟 of 𝒮 , the KG 𝒦 = ⟨𝒯 ,𝒜ℳ(𝒟)⟩
is called the Virtual Knowledge Graph of ⟨𝒯 ,ℳ,𝒮⟩ through 𝒟. The qualifier “virtual” in the

3

http://www.w3.org/TR/r2rml/

4

https://www.w3.org/TR/r2rml/#dfn-string-template

5

http://www.w3.org/TR/turtle/

http://www.w3.org/TR/r2rml/
https://www.w3.org/TR/r2rml/#dfn-string-template
http://www.w3.org/TR/turtle/


name derives from the fact that the virtual ABox 𝒜ℳ(𝒟) in a VKG setting is not materialized

and stored somewhere. Query answering in VKGs, in fact, is carried out through query rewriting

and query unfolding techniques [11, 6]: user queries, expressed in SPARQL
6
, get translated on-

the-fly into equivalent SQL queries, which then are directly evaluated against the DB.

3. Mapping Patterns

In its basic form, a mapping pattern is a quadruple ⟨𝒞,𝒮,ℳ, 𝒯 ⟩, where 𝒞 is a conceptual

model, 𝒮 a database schema, ℳ a set of mappings, and 𝒯 an (OWL2QL) ontology. In such

pattern, the pair ⟨𝒞,𝒮⟩ puts into correspondence a conceptual representation with one of its

(many) admissible (i.e., formally sound [12, 13]) database schemata, like those prescribed by

well-established database modeling methodologies. The pair ⟨ℳ, 𝒯 ⟩, instead, is formed by the

DB ontology 𝒯 , which is the OWL2QL encoding
7

of the conceptual model 𝒞, and the set ℳ of

mappings, providing the link between 𝒮 and 𝒯 . The term “DB ontology” refers to an ontology

whose concepts and properties reflect the constructs of the conceptual model, mirroring the

structure of the relational database, as displayed in Figure 1.

Some of the more advanced patterns have a more complex structure, where pairs of conceptual

models and/or pairs of database schemata are used in place of 𝒞 and 𝒮 , respectively (e.g., the

pattern “SHa” falls in this category). These patterns prescribe specific transformations to be

applied to an input conceptual (resp., DB) schema, in order to obtain an output conceptual

(resp., DB) schema. These output artifacts make explicit the presence of specific structures that

are revealed through the application of the pattern itself. These structures can in turn enable

further applications of patterns.

Presentation Conventions. We show the fragment of the conceptual model that is affected

by the pattern in E-R notation (adopting the original notation by Chen [14]). To compactly

represent sets of attributes, we use a small diamond in place of the small circle used for single

attributes in Chen’s notation. For cardinality constraints we follow the “look-here” convention,

that is, the cardinality constraint for a role is placed next to the entity participating in that role.

In the DB schema, we use 𝑇 (K,A) to denote a table with name 𝑇 , primary key consisting of

the attributes K, and additional attributes A. Given a set U of attributes in 𝑇 , we denote by

key𝑇 (U) the fact that U form a key for 𝑇 . Referential integrity constraints (like, e.g., foreign

keys) are denoted with arcs, pointing from the referencing attribute(s) to the referenced one(s).

For conciseness, we denote sets of the form {𝑜 | condition} as {𝑜}condition . In order to express

datatypes for data properties, we introduce two auxiliary functions: a function 𝜏 that, given

a DB attribute 𝐴, returns the DB datatype of 𝐴, and a function 𝜇 that associates, to each DB

datatype, a corresponding RDF datatype. For the definition of 𝜇, we re-use the Natural Mapping
8

correspondence provided by the R2RML recommendation. As a final note, following the E-R-

diagrams convention, we assume a default (1, 1) cardinality on attributes. For such a reason, in

the DB schema we assume all attributes to be not nullable by default (using the SQL convention,

6

http://www.w3.org/TR/sparql11-query

7

Modulo the expressivity of the OWL2QL language.

8

https://www.w3.org/TR/r2rml/#natural-mapping

http://www.w3.org/TR/sparql11-query
https://www.w3.org/TR/r2rml/#natural-mapping


Table 2
An extract of our catalog of mapping patterns.

Conceptual Model DB Schema Mappings Ontology

Schema Entity (SE)

E

K A

𝑇𝐸(K,A)
𝑠: 𝑇𝐸

𝑡: 𝐶𝐸(t𝐸(K)),
{𝑑𝐴(t𝐸(K), 𝐴)}𝐴∈K∪A

⎧⎨⎩ 𝛿(𝑑𝐴) ⊑ 𝐶𝐸 ,
𝜌(𝑑𝐴) ⊑ 𝜇(𝜏(𝐴)),
𝐶𝐸 ⊑ 𝛿(𝑑𝐴)

⎫⎬⎭
𝐴∈K∪A

In case of optional attributes, for each optional attribute 𝐴′
of 𝐸, add an opt(𝐴′) constraint to the DB schema and drop the corresponding

inclusion axiom 𝐶𝐸 ⊑ 𝛿(𝑑𝐴′) from the ontology.

Schema Relationship (SR)

E

KE AE

F

KF AF

R

𝑇𝐸(K𝐸 ,A𝐸) 𝑇𝐹 (K𝐹 ,A𝐹 )

𝑇𝑅(K𝑅𝐸 ,K𝑅𝐹 )

𝑠: 𝑇𝑅

𝑡: 𝑝𝑅(t𝐶𝐸
(K𝑅𝐸), t𝐶𝐹

(K𝑅𝐹 ))
∃𝑝𝑅 ⊑ 𝐶𝐸

∃𝑝−𝑅 ⊑ 𝐶𝐹

• In case of cardinality (_, 1) on role 𝑅𝐸 (resp., 𝑅𝐹 ), the primary key of 𝑇𝑅 is restricted to the attributes K𝑅𝐸 (resp., K𝑅𝐹 ). In case both roles

have cardinality (_, 1), either choice for the primary key is made, and the remaining attributes form a non-primary key in the logical schema.

• In case of cardinality (1, _) on role 𝑅𝐸 (resp., 𝑅𝐹 ), the inclusion dependency K𝐸 ⊆ K𝑅𝐸 (resp., K𝐹 ⊆ K𝑅𝐹 ) holds in the schema, and the

first (resp., second) inclusion axiom in the ontology holds in both directions. Note that when the maximum cardinality on role 𝑅𝐸 (resp.,

𝑅𝐹 ) is 1, the corresponding inclusion dependency is actually a foreign key.

Schema Relationship with Identifier Alignment (SRa)

E

KE AE

F

KF UF

AF

R

𝑇𝐸(K𝐸 ,A𝐸) 𝑇𝐹 (K𝐹 ,U𝐹 ,A𝐹 )

𝑇𝑅(K𝑅𝐸 ,U𝑅𝐹 ) key𝑇𝐹
(U𝐹 )

𝑠: 𝑇𝑅 ⋊⋉U𝑅𝐹=U𝐹
𝑇𝐹

𝑡: 𝑝𝑅(t𝐶𝐸
(K𝑅𝐸), t𝐶𝐹

(K𝐹 ))
∃𝑝𝑅 ⊑ 𝐶𝐸

∃𝑝−𝑅 ⊑ 𝐶𝐹

Schema Hierarchy with Identifier Alignment (SHa)

F AF

KF

E

KE AE

F AF

KF

E

KE AE

𝑇𝐸(K𝐸 ,A𝐸)

𝑇𝐹 (K𝐹 ,K𝐹𝐸 ,A𝐹 )

key𝑇𝐹
(K𝐹𝐸)

𝑇𝐸(K𝐸 ,A𝐸)

𝑉𝐹 (K𝐹 ,K𝐹𝐸 ,A𝐹 ) = 𝑇𝐹

key𝑉𝐹
(K𝐹 )

𝑠: 𝑉𝐹

𝑡: 𝐶𝐹 (t𝐶𝐸
(K𝐹𝐸)),

{𝑑𝐴(t𝐶𝐸
(K𝐹𝐸), 𝐴)}𝐴∈K𝐹∪A𝐹

𝐶𝐹 ⊑ 𝐶𝐸⎧⎨⎩ 𝛿(𝑑𝐴) ⊑ 𝐶𝐹 ,
𝜌(𝑑𝐴) ⊑ 𝜇(𝜏(𝐴)),
𝐶𝐹 ⊑ 𝛿(𝑑𝐴)

⎫⎬⎭
𝐴∈K𝐹∪A𝐹

In this pattern, the “alignment” is meant to align the primary identifier used in the child entity to the primary identifier used in the parent

entity. The other two possiblities for applying the pattern are:

• the foreign key in the child entity is the primary key of that entity, and references a non-primary key of the parent entity;

• the foreign key in the child entity is a non-primary key of that entity, and references a non-primary key of the parent entity.

We depict here the most common scenario, where the foreign key points to the primary key of the parent entity.

Observe that this pattern requires a change in the conceptual model (essentially keeping track of the attributes used for identifying the objects

of the subclass).

declared as “NOT NULL”). An optional attribute 𝐴 is instead denoted by adding opt(𝐴) to the

DB schema. Such notation extends in the natural way to a set A of attributes.

Pattern Catalog. Table 2 shows an excerpt of our patterns, which we discuss in detail here.

Schema Entity (SE). This fundamental pattern describes the correspondence between an entity

with a primary identifier and attributes in the DB schema, and a class and data properties in the

ontology. The entity is expressed in the DB schema through a single table 𝑇𝐸 with primary key

K and other attributes A, as it is the norm in sound DB design practices. The mappings column

explains how 𝑇𝐸 is mapped into a corresponding class 𝐶𝐸 . The primary key of 𝑇𝐸 is employed

to construct the IRIs of the objects that are instances of 𝐶𝐸 , using a template t𝐸 specific for

that entity. Each relevant attribute of 𝑇𝐸 is mapped to a data property of 𝐶𝐸 , with suitable

domain and range axioms. A mandatory participation constraint is added to each data property

corresponding to a mandatory attribute.

Example: A client registry table containing SSNs of clients, together with their name as

an additional attribute, is mapped to a Client class using the SSN to construct its objects. In



addition, the SSN and name are mapped to two corresponding data properties.

Schema Relationship (SR). This pattern describes the correspondence between a binary relation-

ship without attributes and an OWL2QL object property, for the case where such relationship

is represented in the DB as a separate (usually, “many-to-many”) table. This pattern considers

three tables 𝑇𝑅, 𝑇𝐸 , and 𝑇𝐹 , for which the set of columns in 𝑇𝑅 is partitioned into two parts

KRE and KRF that are foreign keys to 𝑇𝐸 and 𝑇𝐹 , respectively. The identifier of 𝑇𝑅 depends

on the role cardinalities in the E-R model. The pattern captures how 𝑇𝑅 is mapped to an object

property 𝑝𝑅, using the two parts KRE and KRF of the partition to construct respectively the

subject and the object of the triples in 𝑝𝑅. The templates t𝐶𝐸
and t𝐶𝐹

must be those respectively

used for building instances of classes 𝐶𝐸 corresponding to 𝑇𝐸 and 𝐶𝐹 corresponding to 𝑇𝐹 .

Example: An additional table in the client registry stores the addresses of each client, and

has a foreign key to a table with locations. The former table is mapped to an address object

property, for which the ontology asserts that the domain is the class Person and the range an

additional class Location, which corresponds to the latter table.

Schema Relationship with Identifier Alignment (SRa). This pattern is similar to pattern SR, but it

comes with a modifier a, indicating that the pattern can be applied after the identifiers involved

in the relationship have been aligned. The alignment is necessary because the foreign key in 𝑇𝑅

does not refer to the primary key K𝐹 of 𝑇𝐹 , but to an alternative key U𝐹 . Since the instances of

the class 𝐶𝐹 corresponding to 𝑇𝐹 are constructed using the primary key K𝐹 of 𝑇𝐹 (cf. pattern

SE), also the pairs that populate 𝑝𝑅 should refer in their object position to that primary key,

which can only be retrieved via a join between 𝑇𝑅 and 𝑇𝐹 on the key U𝐹 .

Example: The primary key of the table with locations is not given by the city and street,

which are used in the table that relates clients to their addresses, but is given by the latitude

and longitude of locations.

Schema Hierarchy with Identifier Alignment (SHa). This patterns handles the case where a

hierarchy is specified and the child entity uses a primary identifier different from the one in the

parent entity. In this situation, the foreign-key constraint can come in three different variants.

In the depicted one, the foreign key in 𝑇𝐹 is over a non-primary key KFE . The objects for 𝐶𝐹

have to be built out of KFE , rather than out of the primary key of 𝑇𝐹 . For this purpose, the

pattern creates a view 𝑉𝐹 identical to 𝑇𝐹 , except that KFE is the primary key. Also the foreign

key relations are preserved. Such view might enable further applications of patterns.

Example: An ISA relation between entities Student and Person. Students are identified by

their matriculation number, whereas persons are identified by their SSN.

4. Conclusions and Future Work

In this work, we have identified and formally specified a number of mapping patterns emerging

when linking DBs to ontologies in a typical VKG setting. Our patterns are grounded in well-

established practices of DB design, and render explicit the connection between the conceptual

model, the DB schema, and the ontology. We envision that the organization in patterns can

enable a number of relevant tasks, notably mapping bootstrapping for incomplete VKGs.



This work is only a first step, with respect to both categorization of patterns, and their actual

use. Regarding the former, we are currently extending this initial catalog with more advanced

“data-driven” patterns, which are patterns where the data component needs to be taken into

account. Regarding the latter, we are investigating solutions to specific problems that need to

be addressed when setting-up a VKG scenario, like the problem of mapping bootstrapping.

Acknowledgments

This research has been partially supported by the Wallenberg AI, Autonomous Systems and

Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation, by the Italian

Basic Research (PRIN) project HOPE, by the EU H2020 project INODE (grant agreement 863410),

and by the project MENS, funded through the 4th Call for Research of the Autonomous Province

of Bolzano (IN2219).

References

[1] G. Xiao, L. Ding, B. Cogrel, D. Calvanese, Virtual Knowledge Graphs: An overview of

systems and use cases, Data Intelligence 1 (2019) 201–223.

[2] J. Sequeda, O. Lassila, Designing and Building Enterprise Knowledge Graphs, Morgan &

Claypool Publishers, 2021.

[3] L. F. de Medeiros, F. Priyatna, Ó. Corcho, MIRROR: Automatic R2RML mapping generation

from relational databases, in: Proc. ICWE, volume 9114 of LNCS, Springer, 2015, pp. 326–

343.

[4] E. Jiménez-Ruiz, E. Kharlamov, D. Zheleznyakov, I. Horrocks, C. Pinkel, M. G. Skjæveland,

E. Thorstensen, J. Mora, BootOX: Practical mapping of RDBs to OWL 2, in: Proc. ISWC,

volume 9367 of LNCS, Springer, 2015, pp. 113–132.

[5] C. Pinkel, C. Binnig, E. Kharlamov, P. Haase, IncMap: Pay as you go matching of relational

schemata to OWL ontologies., in: Proc. 8th Int. Workshop on Ontology Matching (OM),

volume 1111 of CEUR, CEUR-WS.org, 2013, pp. 37–48.

[6] D. Calvanese, B. Cogrel, S. Komla-Ebri, R. Kontchakov, D. Lanti, M. Rezk, M. Rodriguez-

Muro, G. Xiao, Ontop: Answering SPARQL queries over relational databases, Semantic

Web J. 8 (2017) 471–487.

[7] J. F. Sequeda, D. P. Miranker, Ultrawrap Mapper: A semi-automatic relational database to

RDF (RDB2RDF) mapping tool, in: Proc. ISWC Posters & Demonstrations Track, volume

1486 of CEUR, CEUR-WS.org, 2015.

[8] S. Abiteboul, R. Hull, V. Vianu, Foundations of Databases, Addison Wesley, 1995.

[9] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, R. Rosati, Tractable reasoning and

efficient query answering in description logics: The DL-Lite family, JAR 39 (2007) 385–429.

[10] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, P. F. Patel-Schneider (Eds.), The De-

scription Logic Handbook: Theory, Implementation and Applications, 2nd ed., Cambridge

University Press, 2007.

[11] A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, R. Rosati, Linking data to

ontologies, J. on Data Semantics 10 (2008) 133–173.



[12] R. Hull, Relative information capacity of simple relational database schemas, SIAM J. on

Computing 15 (1986) 856–886.

[13] R. J. Miller, Y. E. Ioannidis, R. Ramakrishnan, Schema equivalence in heterogeneous

systems: Bridging theory and practice, Information Systems 19 (1994) 3–31.

[14] P. P. Chen, The Entity-Relationship model: Toward a unified view of data, ACM TODS 1

(1976) 9–36.


	1 Introduction
	2 Preliminaries
	3 Mapping Patterns
	4 Conclusions and Future Work

